a) Xét ΔHBAΔHBA và ΔABCΔABC có:
ˆAHB=ˆCAB=90∘AHB^=CAB^=90∘
ˆBB^ là góc chung
⇒ΔHBA∼ΔABC⇒ΔHBA∼ΔABC (g-g)
c) ΔABCΔABC có ADAD là đường phân giác, theo tính chất đường phân giác ta có:
SΔABD=12⋅AH⋅BDSΔABD=12·AH·BD
⇒SΔABDSΔACD=BDDC=34⇒SΔABDSΔACD=BDDC=34
c, định lí Py-ta-go trong tam giác vg ABC (vg tại A)
BC^2= AB^2 +AC^2
BC=20 cm
Có HBA~ABC(cmt)
BH/AB=BA/BC
AB^2=BH*BC
BH=7,2 cm
CH=BC-BH=12,8 cm
xét ABH và CAH
ABH ~ CAH (g-g)
AH/CH=BH/AH
AH^2=BH*CH=7,2*12,8=92,16cm
AH=9,6 cm
ta có AD là tia pg
DB/AB=DC/AC=DB+DC/AB+AC=BC/AB+AC=5/7
DC=5/7*16= 11,4 cm
HD=HC-DC=1,4 cm
SAHD= AH*HD= 9,6*1,4=13,44 cm^2