Cho tam giác ABC vuông tại A, AB<AC. Kẻ AH vuông tại BC (H thuộc BC). Trên BC lấy điểm I sao cho HI = HB. Trên tia đối của tia HA lấy điểm K sao cho HK = HA:
a) Chứng minh tam giác ABH = tam giác KIH
b) Chứng minh AB song song với KI
c) Vẽ IE vuông góc AC (E thuộc AC). Chứng minh K,I,E thẳng hàng
d) Trên tia đối của tia IA lấy điểm D sao cho ID = IA. Chứng minh góc IKD = góc IDK
a: Xét ΔABH vuông tại H và ΔKIH vuông tại H có
HA=HK
HB=HI
Do đó: ΔABH=ΔKIH
b: Xét tứ giác ABKI có
H là trung điểm của AK
H là trung điểm của BI
Do đó: ABKI là hình bình hành
mà BI\(\perp\)AK
nên ABKI là hình thoi
=>AB//IK
c: Ta có: AB\(\perp\)AC
IE\(\perp\)AC
Do đó: AB//IE
mà AB//IK
nên I,K,E thẳng hàng