a: Xét ΔAHB vuông tại H và ΔAHK vuông tại H có
AH chung
HB=HK
Do đó: ΔAHB=ΔAHK
b: Ta có: HE\(\perp\)AC
AB\(\perp\)AC
Do đó: HE//AB
=>\(\widehat{EHA}=\widehat{HAB}\)
mà \(\widehat{HAB}=\widehat{HAK}\)
nên \(\widehat{EHA}=\widehat{HAK}\)
a: Xét ΔAHB vuông tại H và ΔAHK vuông tại H có
AH chung
HB=HK
Do đó: ΔAHB=ΔAHK
b: Ta có: HE\(\perp\)AC
AB\(\perp\)AC
Do đó: HE//AB
=>\(\widehat{EHA}=\widehat{HAB}\)
mà \(\widehat{HAB}=\widehat{HAK}\)
nên \(\widehat{EHA}=\widehat{HAK}\)
Cho tam giác ABC vuông tại A có B=600. Vẽ AH vuông góc vs BC tại H
a) Tính số đo góc HAB
b) Trên cạnh AC lấy điểm D sao cho AD=AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI và tam giác ADI
c) Tia AI cắt cạnh HC tại điểm K. Chứng minh tam giác AHK = tam giác ADK từ đó suy ra AB// KD
d) Trên tia đối của tia HA lấy điểm E sao cho HE=AH. Chứng minh H là trung điểm của BK và 3 điểm D,K,E thẳng hàng
Cho tam giác ABC vuông tại A có B=600. Vẽ AH vuông góc vs BC tại H
a) Tính số đo góc HAB
b) Trên cạnh AC lấy điểm D sao cho AD=AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI và tam giác ADI
c) Tia AI cắt cạnh HC tại điểm K. Chứng minh tam giác AHK = tam giác ADK từ đó suy ra AB// KD
d) Trên tia đối của tia HA lấy điểm E sao cho HE=AH. Chứng minh H là trung điểm của BK và 3 điểm D,K,E thẳng hàng
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC ( H thuộc BC). Tia phân giác \(\widehat{HAC}\) cắt BC tại D. Lấy điểm E trên cạnh AB sao cho BE=BH.
a, Chứng minh rằng: \(\Delta\)BAD cân tại B.
b, Chứng minh rằng: EH // AD
cho tam giác ABC có AB=AC. Gọi H là trrung điểm của BC
a) Chứng minh: tam giác AHB= tam giác AHC
b) Chứng minh Ah vuông góc BC
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC// AH
Cho tam giác ABC vuông tại A, AB<AC , đường cao AH . Trên tai HC lấy điểm D sao cho HB=HD
a) Chứng minh: Tam giác ABH=Tam giác ADH
b)Trên tai đối của tia HA lấy điểm E sao cho HA=HE. C/minh :Tam giác DAE can
c) C/m: BC-BD>AC-AB
d) Kẻ CK vuông với AD tại K . C/m: AH,BE,CK đồng quy.
Cho tam giác ABC vuông tại A. Kẻ AH vuông BC tại H. Kẻ tia phân giác AD của góc BAH (D∈BC)
a) Chứng minh: ^BAH=^C, ^CAH=^B
b) Chứng minh: ΔACDcân
c) Kẻ DK vuông BC, cắt AB tại K. Chứng minh ΔKAD cân
d) CK là tia phân giác của ^C và CK là đường trung trực AB
e) Trên cạnh AB lấy điểm I sao cho AI = AH. Chứng minh DI // AC
Tam giác ABC vuông tại A , từ K trên BC kẻ KH vuông góc với AC . Trên tia đối của tia HK lấy I sao cho HI = HK . Chứng minh :
a) AB // HK
b) tam giác AKI cân
c) góc BAK = góc AIK
d) tam giác AIC = tam giác AKC
Cho tam giác ABC có AB = AC , góc B = góc C . Kẻ BD vuông góc với AC và kẻ CE vuông góc với AB . Hai đoạn thẳng BD và CE cắt nhau tại I .
a) Chứng minh rằng tam giác BDC = tam giác CEB
b) So sánh góc IBE và góc ICD
c) Đường thẳng AI cắt BC tại trung điểm H . Chứng minh rằng AI vuông góc với BC
Cho tam giác ABC có AB < AC, M là trung điểm của BC. Kẻ BE và CF vuông góc với AM lần lượt tại E và F.
a) CM : BE = CF
b) Trên nửa mặt phẳng bờ AF chứa điểm C vẽ Ax // CF. Trên tia Ax lấy K sao cho AK = CF. Gọi H là giao điểm của AC và KF.
Chứng minh : \(\widehat{CHF}=2\widehat{CAF}\)
help !!!