Cho Tam giác ABC vuông tại A ( AB < AC ) có đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác CBA
b) Chứng minh AH2 = BH . HC
c) Trên đường thẳng vuông góc AC tại C , lấy điểm D sao cho CD = AB ( D và B nằm khác phía sao với đường thẳng AC ) . Đoạn thẳng HD cắt đoạn thẳng AC tại S . Kẻ AF vuông góc HS tại F .CM BH . CH = HF.HD
d) CM SFC = SHC
Cho Tam giác ABC vuông tại A ( AB < AC ) có đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác CBA
b) Chứng minh AH2 = BH . HC
c) Trên đường thẳng vuông góc AC tại C , lấy điểm D sao cho CD = AB ( D và B nằm khác phía sao với đường thẳng AC ) . Đoạn thẳng HD cắt đoạn thẳng AC tại S . Kẻ AF vuông góc HS tại F .C/m BH . CH = HF.HD
d) CM SFC = SHC
Cho hình thang ABCD (CD>AB) với AB//CD và AB vuông góc với BD. Hai đường chéo AC và BD cắt nhau tại G. Trên đường thẳng vuông góc với AC tại C lấy điểm E sao cho CE=AG và đoạn thẳng GE không cắt đường thẳng CD. Trên đoạn thẳng DC lấy điểm F sao cho DF=GB
a) Chứng minh tam giác FDG đồng dạng với tam giác ECG
b) Chứng minh: GF vuông góc với EF
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
Cho tam giác ABC nhọn (AB<AC) hai đường cao BE và CF cắt nhau tại H.Vẽ đường thẳng vuông góc với AB tại B, vẽ đường thẳng vuông góc với AC tại C , hai đường thẳng này cắt nhau tại D
a) C/m : AH vuông góc với BC và tứ giác BHCD là hình bình hành
b) Gọi M là trung điểm BC. C/m : 3 điểm H, M, D thẳng hành và tam giác EMF cân
c) Gọi K là điểm đối xứng của H qua BC .C/m BD=CK
d) Dường thẳng vuông góc tại M cắt AD tại L. C/m AH = 2ML
Cho tam giác ABC có AB<AC, D nằm giữa A và C sao cho: \(\widehat{ABD}=\widehat{ACB}\). Phân giác của góc A cắt BC tại E, BD tại F. Qua A kẻ đường thẳng vuông góc với AE cắt BC tại M. CM: MB.EC=MC.EB
Cho tam giác ABC vuông tại A (AB<AC), phân giác BD (D thuộc AC). Gọi M là trung điểm của BC.
Đường thẳng MD cắt đường thẳng BA tại N. Qua A kẻ đường thẳng song song với BC cắt NM, NC thứ tự tại P và Q
a) CMR: PA=PQ
b) Qua B kẻ đường thẳng vuông góc với BC cắt tia CA tại E. CMR: DA.EB=DC.EA
c) CM: Hai tam giác EBD và NBD có diện tích bằng nhau