Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d (d cắt BC tại một điểm nằm ngoài đoạn BC). Từ B kẻ BE\(\perp\)d (E\(\in\)d).Từ C kẻ CF\(\perp\)d (F\(\in\)d). So sánh độ dài hai đoạn thẳng BE và CF với độ dài đoạn thẳng EF
Bμi 5: Cho tam giác ABC, kẻ BE vuông góc AC với CF vuông góc AB. Biết BE = CF = 8cm.
độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a) Chứng minh tam giác ABC là tam giác cân
b) tính độ dài cạnh đáy BC
c) BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường
thẳng AO là trung trực của đoạn thẳng EF.
Tam giác ABC vuông cân tại A có AD là trung tuyến. Trên đoạn thẳng DC lấy điểm H. Hạ BE và CF vuông góc với đường thẳng AH (E, F thuộc đường thẳng AH).
a. CMR: BE = AF
c. CMR: tam giác DEF vuông cân tại D.
Cho tam giác ABC vẽ điểm M là trung điểm BC trên tia đối của tia MA lấy điểm D sao cho MA=MD
a) CM tam giác ABM= tam giác DCM
b) CM AB//DC
c) kẻ BE vuông góc với AM CF vuông góc với DM CM M là trung điểm của đoạn thẳng Ef
câu 4: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BD vuông góc với đường thẳng d tại D (D in d) , kẻ CE vuông góc với đường thẳng d tại E(E in d) . Biết rằng độ dà cạnh AB = 5cm EC = 4cm . b) Chứng minh rằng AD = CE . c) Chứng minh rằng tổng BD²+CE²có giá trị ko đổi a) Tính độ dài cạnh AE=?
Tam giác ABC vuông cân tại A có AD là trung tuyến. Trên đoạn thẳng DC lấy điểm H. Hạ BE và CF vuông góc với đường thẳng AH (E, F thuộc đường thẳng AH).
a. CMR: BE = AF.
b. Gọi G là giao điểm của AD và BE. CMR: GH song song với AC.
c. CMR: tam giác DEF vuông cân tại D.
d. CMR: HE > HD.
Cho tam giác ABC, lẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8cm. Độ dài các đoạn thẳng BF và BCtỉ lệ với 3 và 5
a) Chứng minh tam giác ABC là tam giác cân
b) Tính độ dài cạnh đáy BC
c) BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng AO là trung trực của đoạn thẳng EF
Cho \(\Delta ABC\) vuông tại A . Kẻ AH vuông góc với BC ( \(H\in BC\) ) . Tia phân giác của các góc \(\widehat{HAC}\) và \(\widehat{HAB}\) lần lượt cắt BC ở D , E . Tính độ dài đoạn thẳng DE biết AB = 5cm ; AC = 12cm
cho tam giác ABC vuông tại A (AB bé hơn AC). gọi D là trung điểm của đoạn thẳng BC, đường thẳng qua D và vuông góc với BC cắt AC tại E. trên tia đối của tia AC lấy điểm F sao cho AE=AF; đường thẳng DA cắt đường thẳng BF tại M.
a. chứng minh tam giác FAM cân
b. biết AB=3cm; BC=5cm, tính độ dài đoạn BM