Cho \(\Delta ABC\) cân tại B , có \(\widehat{ABC}=80^o\) . Lấy điểm I nằm trong tam giác sao cho \(\widehat{IAC}=10^o\) và \(\widehat{ICA}=30^o\) . Tính số đo \(\widehat{AIB}\) .
Cho tam giác ABC cân tại A gọi M là đường trung điểm của AC.trên tia đối của tia MB lấy điểm D sao cho DM=BM
a.chứng minh tam giác BMC= tam giác DMA.suy ra AD//BC
b.chứng minh tam giác ACD là tam giác cân
c.trên tia đối của tia CA lấy điểm E sao cho CA=CE.chứng minh DC đi qua trung tuyến I của BE
(vẽ hình giúp tớ nha)
giúp với tớ đg cần gấp
Cho tam giác ABC vuông tại A có am là đường trung tuyến trên tia đối của MA lấy điểm D sao cho MD = MA
a, chứng minh tam giác ACD vuông
b ,Gọi K là trung điểm của AC Chứng minh KB bằng KD
c , KD cắt BC tại I và KB cắt AD tại N . Chứng minh tg KNI cân
Cho tam giác ABC vuông cân tại A, D là một điểm nằm trong tam giác sao cho \(\widehat{DBC}=\widehat{DCA}=30\) độ. Chứng minh AC=DC.
Cho tam giác ABC vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho góc ABN = góc ACM = 15 độ. Gọi I là giao điểm của MC và NB. Gọi H,E,D lần lượt là trung điểm của BC,BN,CM.
a) So sánh tam giác ABN và tam giác ACM.
b) C/m tam giác ADE đều.
c) C/m 3 điểm A,I,H thẳng hàng.
d) Tính góc DHE
Cho tam giác ABC cân tại A. CP,BQ là các tia phân giác trong của tam giác ABC
(P = AB,Q < AC). Gọi O là giao điểm của CP và BỘ.
a) Chứng minh tam giác OBC là tam giác cân.
b) Chứng minh đường thẳng AO vuông góc với BC.
c) Chứng minh CP = BQ .
d) Tam giác ABQ là tam giác gì? Vì sao?.
Cho tam giác ABC cân tại A có góc A=40 độ và AH là phân giác của góc A. Trên AH lấy E sao cho góc ABE=30 độ, trên AC lấy điểm F sao cho góc CBF=30 độ. Chứng minh tam giác AEF cân
Cho tam ABC cân tại A , có góc BAC = 90 độ . Gọi M , N lần lượt là trung điểm của các đoạn AB , AC . Kẻ NH vuông góc với CM tại H , AK vuông góc với CM tại K .
a, Chứng minh : tam giác CHN = tam giác AKM và tam giác CHA = tam giác AKB
b, Chứng minh : tam giác ABH cân tại B
c, Kẻ HE vuông góc với AB tại E chưng minh : Hm là phân giác góc BHE
Mọi người ơi giúp mik bài này vs , mik cảm ơn nhìu nhaa