Cho tam giác ABC vuông cân tại A, BC = 2cm. Ở phía ngoài tam giác ABC vẽ tam giác ACE vuông cân tại E
a) Chứng minh rằng AECB là hình thang vuông
b) Tính các góc và các cạnh của hình thang AECB
Cho tam giác ABC vuông cân tại A. Ở phía ngoài tam giác ABC, vẽ tam giác BCD vuông cân tại B. Tứ giác ABCD là hình gì ? Vì sao ?
Bài 1 : Cho hình thang ABCD (AB//CD) .Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc đáy CD. Chứng minh AD+BC= DC
Bài 2 : Cho ΔABC vuông cân tại A , ở phía ngoài ΔABC , vẽ Δ BCD vuông cân tại B . Tứ giác abcd là hình gì ? Vì sao ?
Cho Tam giác ABC cân tại A, Hai đường trung tuyến BD và CE. Chứng minh : a, tam giác ADEcân tại A. b tam giác ABD=tam giác ACE . c, Tứ giác BCDE là hình thang cân.
cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến
a)chứng minh BDCE là hình thang cân
b)tính các góc của hình thang cân đó biết góc A = 40 độ
Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông góc với BC và BD = BC.
a)Tứ giác ABCD là hình gì? Vì sao?
b) Biết AB = 5cm. Tính CD?
Cho hình thang ABCD (AB //CD ).Các tia p/g của góc A và D cắt nhau ở I .Gọi M là trung điểm của A. a) CM tam giác AMI cân b)CM tam giác AID vuông.
Cho tam giác ABC cân tại A. Gọi M là trung điểm AB N, là trung điểm BC. a) Chứng minh rằng tứ giác AMNC là hình thang. b) Biết BAC = 40 độ , tính số đo góc MNC
c) Biết diện tích hình thang AMNC bằng 60cm tính diện tích tam giác BMN
cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm BC. Kẻ ME vuông góc AB, MF vuông góc AC
a) Chứng minh: AEMC là hình thang vuông
b) Chứng minh: AEMF là hình chữ nhật