Cho tam giác ABC, các đường cao BD, CE. CMR:
a. Tam giác ABD đồng dạng vs tam giác ACE.
b. Tam giác ADE đồng dạng vs tam giác ABC.
Cho tam giác ABC có 3 góc nhọn các đường cao BD, CE
a) CM: tam giác ABD đồng dạng với tam giác ACE
b) CM: tam giác ADE đồng dạng tam giác ABC
c) CM: Hai đường thẳng BC và DE cắt nhau tại F. CM: FD.FE=FB.FC
cho tam giác ABC (A=90 độ),AB=6cm, AC=8cm vẽ đường cao AH đường phân giác BD của góc B cắt AH tại I. (D thuộc AC)
a.cm tam giác HAC đồng dạng với tam giác ABC
b.tính BC và HC
c.cm AB.BI=BD.HB
d.tính tỉ số diện tích của 2 tam giác HAC và HBA
Cho tam giác nhọn ABC, hai đường cao BD, CE. a/Chứng minh: △ABD∼△ACE. b/Chứng minh: △ADE∼△ABC. c/Biết ∠ABD=30o,SADE=30m2.Tính SABC. d/Tia phân giác ∠ACB cắt AB tại K. Chứng minh rằng CK2 < CA.CB
Cho tam giác ABC nhọn có hai đường cao BD và CE.
a, C/minh: Tam giác ABD đồng dạng tam giác ACE
b, C/minh: Tam giác ADE đồng dạng tam giác ABC
c, Gọi H là giao điểm của BD và CE, K là giao điểm của AH và BC. CMR: \(AH\perp BC\) và CH.CE = BC. CK
d, Chứng minh: \(BH.BD+CH.CE=BC^2\)
Cho tam giác ABC nhọn hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh BH.HD = CH.HE
c) Chứng minh Chứng tam giác ADE đồng dạng tam giác ABC
d) Gọi F là giao điểm của AH và BC, K là trung điểm của AH. Chứng minh: BF.CF = KF2 – HD2
Cho ∆ABC có BD và CE là đường cao.CMinh:
a)∆ABD đồng dạng ∆ACE
b)∆ADE đồng dạng ∆ABC
c)∠EDC+∠B=180
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
Cho tam giác ABC có AB<AC, D nằm giữa A và C sao cho: \(\widehat{ABD}=\widehat{ACB}\). Phân giác của góc A cắt BC tại E, BD tại F. Qua A kẻ đường thẳng vuông góc với AE cắt BC tại M. CM: MB.EC=MC.EB