Bài 3: Cho ABC cân tại A. Kẻ AO ⊥ BC tại O. Trên tia đối của tia OA lấy điểm M sao cho OM = OA. a) Chứng minh: OB = OC b) Chứng minh: OAB = OMC c) Chứng minh: CM // AB
Cho tam giác AOB. Trên tia đối của tia OA lấy điểm C sao cho OC = OA , trên tia đối của tia OB lấy điểm D sao cho OD = OB
a) Chứng minh AB // CD
b) M là một điểm nằm giữa A và B. Tia MO cắt CD ở N, CMR: OM = ON
c) Từ M kẻ MI vuông góc với OA , từ N kẻ NF vuông góc OC. CMR: MI = NF
Tam giác ABC vuông tại A, AB= 8cm, AC=6cm
a, tính BC
b, So sánh góc B và góc C
c, Từ điểm M trên cạnh BC kẻ MI vuông AB. Trên tia đối IM lấy điểm N sao cho IM =IN. CM tam giác AMN cân
d, trên tia đối AC lấy điểm K, AK=AC. CM N,K,B thẳng hàng
MÌNH ĐANG CẦN GẤP
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
làm giúp mik vs
Bài 1. Cho tam giác ABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc BC (H thuộc BC).
a) Chứng minh: HB = HC và BHA = CAH
b) Tính độ dài AH.
c) Kẻ HD vuông góc AB (D thuộc AB), kẻ HE vuông góc AC (E thuộc AC). Chứng minh: BD = CE.
d) HE cắt AB tại G, DH cắt AC tại I. Chứng minh tam giác GHI cân.
e) Gọi M là trung điểm của GI. Chứng minh ba điểm A, H, M thẳng hàng.
Bài 2. Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC. Trên BC lấy điểm M sao cho BM = BA, trên AC lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc AC.
Bài 3: Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc với CA (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh ba điểm B, M, D thẳng hàng.
Bài 4:Cho tam giác ABC cân ở A. Trên cạnh AB lấy điểm M, trên tia đối tia CA lấy điểm N sao cho BM = CN. Gọi K là trung điểm MN. Chứng minh ba điểm B, K, C thẳng hàng
Bài 5: Cho tam giác cân ABC, AB = AC. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. Chứng minh rằng:
a) DM = EN; b) Đường thẳng BC cắt MN tại điểm I là trung điểm của MN
c) Đường thẳng vuông góc với MN tại I luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Bài 6: Cho tam giác đều ABC. Trên tia đối của tia BA lấy điểm D sao cho BD = BA. Chứng minh DC vuông góc AC.
Bài 7: Cho tam giác ABC vuông tại C. Phân giác góc A và góc B cắt AC ở E, cắt BC ở D. Từ D, E hạ các đường vuông góc xuống AB cắt AB ở M và N. Tính góc MCN.
Cho tam giác ABC biết AB < AC. AE là tia phân giác của góc BAC. Trên cạnh AC lấy điểm M sao cho AM = AB. AE cắt BM tại I. Trên tia đối của tia AM lấy điểm N sao cho EN = EC. Chứng minh:
a. Tam giác ABE = tam giác AME. (đã chứng minh)
b. IB = IM. (đã chứng minh)
c. Tam giác ENB = tam giác ECM. (đã chứng minh)
d. A, B, N thẳng hàng.
Cho góc xOy = 400 có Ot là tia phân giác. Trên Ot lấy điểm M, qua M kẻ đường vuông góc với Ot cắt Ox tại A và cắt Oy tại B. Trên tia Mt lấy điểm N sao cho MN =MO
a) Chứng minh: tam giác OMA = tam giác OMB.
b) Chứng minh: BN =BO.
c) Chứng minh: BN // OA; OAB = NBA.
d) Tính các góc của tam giác OBN.
Cho tam giác ABC cân tại A .Trên tia đối của tia BC lấy điểm M .Trên tia đối của tia BC lấy N.Sao cho BM=CN.Kẻ BH vuông góc với AM,CK vuông góc với AM
a) CM: Tam giác AMN cân tại A
b)CM :BH=CK và AH=AK
c)CM:HB cắt AC tại O .CM AO là tia p/g của góc BAC và AO vuông góc với BC
Cho ∆ ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm M sao cho BA = BM , kẻ BH ⊥ AM ( H∊ AM). Tia BH cắt cạnh BC tại E.
a) Giả sử AB= 8cm , BC = 10 cm . Tính độ dài cạnh AB
b) Chứng minh BE p/giác ABC
c) EM ⊥ BC
d) MB ∩ BA = {F} . chứng tỏ ∆ BFC cân
e) AM // FC