Kẻ trung tuyến AM của \(\Delta ABC\) và trên AM đặt \(AG=\frac{2}{3}AM\)
Xét \(\Delta GHI\) và \(\Delta GMN\) có : HG = \(\frac{1}{2}AG\) mà \(AG=\frac{2}{3}AM\)
nên \(HG=\frac{1}{2}.\frac{2}{3}AM=\frac{1}{3}AM;GM=\frac{1}{3}AM\)
Vậy HG = GM
tương tự ta có \(GI=CN=\frac{1}{3}EN;\widehat{HGE}=\widehat{NGM}\) (đối đỉnh)
\(\Rightarrow\Delta GHI=\Delta GMN\)
=> HI = MN ; \(\widehat{IHG}=\widehat{NMG}\) mà 2 góc này nằm ở vị trí so le trong => HI // MN