Gọi E là trung điểm DK
\(\Rightarrow\) Chứng minh BE là đường trung bình của \(\Delta ADK\)
\(\Rightarrow BE=\frac{1}{2}AK\left(1\right)\)
Xét \(\Delta MBE\) và \(\Delta MCK\):
\(\widehat{MBE}=\widehat{MCK}\) ( so le trong) ,
\(MB=MC\left(gt\right)\)
\(\widehat{BME}=\widehat{CMK}\) ( 2 góc đối đỉnh)
=> 2 tam giác bằng nhau (g.c.g)=> BE=CK (2)
Từ ( 1 ) ( 2 ) \(\Rightarrow CK=\frac{1}{2}AK\)
\(\Leftrightarrow AK=2KC\left(đpcm\right)\).