Cho tam giác ABC có AB=AC. D là trung điểm của BC. E là trung điểm của AD. Qua E vẽ đường thẳng vuông góc với AD cắt AB tại M. CMR:
a, Tam giác ABD = Tam giác ACD.
b, AD vuông góc với BC.
c, Tam giác AME = Tam giác DME
d, Trên nửa mặt phẳng bờ AD có chứa điểm B, vẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH = BD. Cm ba điểm D,M,H thẳng hàng.
Vẽ hình và ghi cả giả thiết, kết luận và làm bài chi tiết giúp mk nha!!!
Cho tam giác ABC có AB=AC. D là trung điểm của BC. E là trung điểm của AD. Qua E vẽ đường thẳng vuông góc với AD cắt BC tại M. CMR:
a, Tam giác ABD = Tam giác ACD.
b, AD vuông góc với BC.
c, Tam giác AME = Tam giác DME
d, Trên nửa mặt phẳng bờ AD có chứa điểm B, vẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH = BD. Cm ba điểm D,M,H thẳng hàng.
Vẽ hình và ghi cả giả thiết, kết luận và làm bài chi tiết giúp mk nha!!!
Cho tam giác ABC có AB=AC. D là trung điểm của BC. E là trung điểm của AD. Qua E vẽ đường thẳng vuông góc với AD cắt BC tại M. CMR:
a, Tam giác ABD = Tam giác ACD.
b, AD vuông góc với BC.
c, Tam giác AME = Tam giác DME
d, Trên nửa mặt phẳng bờ AD có chứa điểm B, vẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH = BD. Cm ba điểm D,M,H thẳng hàng.
Vẽ hình và ghi cả giả thiết, kết luận và làm bài chi tiết giúp mk nha!!!
Cho đoạn thẳng AB . Vẽ hai tia Ax và By thuộc hai nửa mặt phẳng đối nhau có bờ là đường thẳng AB sao cho Ax \(\perp\) AB , By \(\perp\)AB. Đường thẳng qua trung điểm M của đoạn thẳng AB lần lượt cắt Ax, By tại C vad D. Chứng minh:
a. M là trung điểm của CD
b. AD = BC ; AD song song với BC
Cho tam giác ABC, K là trung điểm của BC. Trên nửa mặt phẳng bờ AC không chứa B kẻ tia Ax vuông góc với AC; trên tia Ax lấy điểm M sao cho AM=AC. Trên nửa mặt phẳng bờ AB không chứa điểm C, kẻ tia Ay vuông góc với AB; trên tia Ay lấy điểm N sao cho AN=AB. Lấy điểm P trên ta AK sao cho AK=KP.
a)Chứng minh AC=BP,
b) C/m: AC song song với BP.
Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.
b/Chứng minh CA= CD và BD=BA
C/cho góc ACB= 45o . Tính góc ADC
D/ Đường cao AH có phải thêm điều kiện gì thì AB//CD
Bài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD
a/ chứng minh ΔAHD=ΔDBH
b/ Hai đường thẳng AB và DH có song song không? vì sao?
c/Tính góc ACB biết góc BAH=35o
Bài 3: Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM
a/ chứng minh ΔABI=ΔACI và AI là tia phân giác góc BAC
b/ chứng minh AM=AN
c/ chứng minh AI vuông góc với BC
Bài 4: Cho góc xOy nhọn, có Ot là Tia phân giác . Lấy điểm A trên Ox, điểm B trên Oy sao cho AH=BD
a/Chứng Minh: ΔAOM=ΔBOM
b/chứng minh:AM=MB
c/ lấy diểm H trên tia Ot. Qua H vẽ đường thẳng song song với AB, dường thẳng này cắt Ox tại C, Cắt Oy tại D.Chứng minh:OH vuông góc với CD
Bài 5:Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm c, trên tia By lấy điểm D sao cho AC=BD
a/ chứng minh : AD=BC
b/ Gọi E là Giao điểm ADvaf BC. Chứng minh :ΔEAC=ΔEBD
c/chứng minh: OE là phân giác của xOy
Bài 6: ChoΔABC có AB=AC. gọi D là trung điểm của BC. chứng minh rằng
a)ΔADB=ΔADC
b) AD vuông góc với BC
Cho tam giác ABC, kẻ AH vuông góc với BC. Trên nửa mặt phẳng AC không chứa điểm B và tam giác ACD sao cho AD=BC, CD=AB. Chứng minh:
a) AB song song với CD
b) AH vuông góc với AD
Cho 2 đường thẳng AB và CD song song với nhau. Đường thẳng a cắt AB tại E, cắt CD tại F (A và C thuộc cùng một nửa mặt phẳng bờ EF). Vẽ tia phân giác Em và Fn của góc AEF và góc EFD.
Chứng minh rằng Em//Fn.
Cần gấp!!!
Cho tam giác ABC có A nhọn . Trên nửa mặt phẳng bờ AC không chứa C . Vẽ tia Ax vuông góc với BC . Trên tia Ax lấy điểm D sao cho AD =AB . Trên nửa Mặt phẳng bờ AC không chứa điểm B. Vẽ tia Ay vuông góc với AC . Trên tia Ax lấy điểm E sao cho AE = AC . Gọi M là trung điểm của BC .
Chứng minh rằng : AM = \(\frac{1}{2}\) DE