Hãy tìm trong tam giác ABC một điểm M sao cho tích khoảng cách từ M đến 3 cạnh có giá trị lớn nhất
Cho đường tròn (O) nội tiếp tam giác ABC với các tiếp điểm là D; E; F lần lượt thuộc các cạnh BC; CA; AB. Chứng minh rằng tích các khoảng cách hạ từ một điểm P bất kì thuộc đường tròn (O) đến các cạnh của tam giác ABC bằng tích các khoảng cách từ điểm P đến các cạnh của tam giác DEF
Cho ΔABC vuông tại A. Từ một điểm M bất kỳ trong tam giác kẻ MH ⊥ BC, MJ ⊥ AC, MK ⊥ AB. Tìm vị trí của M sao cho tổng \(MH^2+MJ^2+MK^2\) nhỏ nhất.
Cho tam giác ABC có đường tròn tiếp xúc với hai cạnh AB, AC và với hai trung tuyến BM, CN( M thuộc AC, N thuộc AB). Vì sao từ SAMB = SANC ⇒ AM+MB+AB = AN+NC+AC ?
Cho tam giác ABC, từ A dựng đường thẳng d cắt cạnh BC. Xác định vị trí của d sao cho tổng khoảng cách từ B và C đến d nhỏ nhất, lớn nhất.
Cho tam giác ABC cân tại A. Điểm M thuộc tia đối của tia BC. Chứng minh rằng hiệu các khoảng cách từ điểm M đến đường thẳng AC và AB bằng chiều cao tương ứng với cạnh bên của tam giác ABC.
Cho tam giác ABC cân tại A. Điểm M thuộc tia đối của tia BC. Chứng minh rằng hiệu các khoảng cách từ điểm M đến các đường thẳng AC và AB bằng chiều cao tương ứng với cạnh bên của tam giác ABC.
Cho tam giác ABC có đường tròn tiếp xúc với hai cạnh AB, AC và với hai trung tuyến BM, CN( M thuộc AC, N thuộc AB). Chứng minh rằng tam giác ABC cân
Cho tam giác ABC và điểm M nằm trong tam giác. Qua M kẻ đường thẳng DE, IJ, FG tương ứng song song với các cạnh BC, CA, AB (G, I thuộc BC; E, F thuộc CA; D, I thuộc AB). Chứng minh: \(S_{AIMF}+S_{BGMD}+S_{CEMJ}\le\dfrac{2}{3}S_{ABC}\)