Bài toán này liên qua đến các đường đối trung và điểm Lemoine của tam giác, hy vọng em đã học nó rồi (nếu chứng minh tất cả từ đầu thì sẽ rất tốn thời gian)
Giả sử M, N, P lần lượt thuộc BC, CA, AB, đặt \(BC=a;CA=b;AB=c\)
Gọi G là trọng tâm MNP; H, I, K lần lượt là hình chiếu của G lên BC, CA, AB
Ta có:
\(MN^2+NP^2+MP^2=3\left(GM^2+GN^2+GP^2\right)\ge3\left(GH^2+GI^2+GK^2\right)\)
Lại có:
\(S_{GBC}+S_{GCA}+S_{GAB}=\dfrac{1}{2}\left(GH.a+GI.b+GK.c\right)=S_{ABC}\)
\(\Rightarrow4S^2=\left(GH.a+GI.b+GK.c\right)^2\le\left(GH^2+GI^2+GK^2\right)\left(a^2+b^2+c^2\right)\)
\(\Rightarrow GH^2+GI^2+GK^2\ge\dfrac{4S^2}{a^2+b^2+c^2}\)
\(\Rightarrow MN^2+NP^2+MP^2\ge\dfrac{12S^2}{a^2+b^2+c^2}\)
Dấu "=" xảy ra khi và chỉ khi \(\dfrac{GH}{a}=\dfrac{GI}{b}=\dfrac{GK}{c}\) hay G là điểm Lemoine của tam giác ABC
\(\Rightarrow M;N;P\) là hình chiếu vuông góc của điểm Lemoine lên BC, CA, AB.