a/ Ta có \(BH=\frac{AB^2}{BC}\)
\(CH=\frac{AC^2}{BC}\)
\(\Rightarrow\frac{BH}{CH}=\frac{\frac{AB^2}{BC}}{\frac{AC^2}{BC}}=\frac{AB^2}{AC^2}\)
Sau đó bình phương 2 vế lên là sẽ ra cái thứ 2
b/ Xét \(\Delta BDH\sim\Delta BAC\left(gg\right)\)
\(\Rightarrow\frac{BD}{BA}=\frac{BH}{BC}\) (1)
Xét \(\Delta CEH\sim\Delta CAB\left(gg\right)\)
\(\Rightarrow\frac{CE}{CA}=\frac{CH}{CB}\) (2)
chia (1) cho (2):
\(\frac{BD}{CE}.\frac{CA}{AB}=\frac{HB}{HC}\Leftrightarrow\frac{BD}{CE}=\frac{HB}{HC}.\frac{AB}{AC}\)
Từ câu a có: \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\frac{BD}{CE}=\frac{AB^2}{AC^2}.\frac{AB}{AC}=\frac{AB^3}{AC^3}\)