Cho tam giác ABC (AB<AC) có đường cao AD (D thuộc BC)
a/ Chứng minh hai tam giác DAB và ACB đồng dạng
b/ Phân giác góc ABC cắt AC tại E, từ C vẽ đường thằng vuông góc với đường thẳng BE tại F chứng minh AE.AB=EC.BD
c/ Kẻ FH vuông AC tại H chứng minh hai góc BCF và HCF bằng nhau
d/ I là trung điểm BC, chứng minh I,H,F thẳng hàng
Cho tam giác ABC vuông tại A ( AB > AC ) . AM là đường trung tuyến . Kẻ đường thẳng vuông góc với AM tại M lần lược cắt AB tại E , cắt AC tại F a. Chứng minh △MBE∼ △MFC b. Chứng minh AE.AB = AC.AF c. Đường cao AH của △ABC cắt EF tại I Chứng minh \(\dfrac{S_{ABC}}{S_{AEF}}\)= (\(\dfrac{AM}{AI}\))2
Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
Cho △ABC vuông tại A (AB>AC) AM là đường trung tuyến . Kẻ đường thẳng vuông góc với AM tại M lần lược cắt AB tại E , cắt AC tại F a. Chứng minh △MBE ∼ △MFC b. Chứng minh AE . AB = AC . AF c. Đường cao AH của △ABC cắt EF tại I Chứng minh \(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AM}{AI}\right)^2\)
Cho \(\Delta ABC\) vuông tại A có AB<AC. Vẽ đường cao AH của \(\Delta ABC\) .Gọi D là điểm đối xứng cuae B qua H. Hạ DE vuông góc với AC tại E
a, Chứng minh AH2=HD.HC
b, Đường trung tuyến CK cuả\(\Delta ABC\) cắt AH,AD và DE lần lượt tai M,F và I. CM: AD.AK - AF.DI=AF.AK
c,Gọi L là giao điểm của BM và AC.CM \(S_{ALB}=S_{AHB}\)
cho tam giác abc vuông ở a, có ab=6cm, ac=8cm, vẽ đường cao ah
a, tính bc
b, cm tam giác abc đồng dạng tam giác ahb
c, cm ab^2=bh.bc. tính bh, hc
d, vẽ phân giác ad của góc a( d thuộc bc). tính db
cho tam giác ABC vuông tại A(AB<AC),đường trung tuyến AM.Qua M kẻ đường thẳng vuông góc với AM cắt AB tại E và cắt AC tại F.Kẻ AH vuông góc với BC,AH cắt EF tại I.Cm
a)góc BAM=góc ABM
b)góc ACB=góc AEF=>tam giác MBE đồng dạng với tam giác MFC
c)AB.AE=AC.AF
Cho tam giác ABC vuông ở C có AC=9cm, AB=15cm. Từ trung điểm M của AB kẻ đường thẳng vuông góc với AB, cắt BC và AC lần lượt ở P và Q.
a) CM : tam giác ABC đồng dạng với tam giác AQM; từ đó suy ra AB mũ 2 =2.AC.AQ
b) Tính PQ.
c) tia AP cắt BQ tại N. CM : CN song song với AB.
d) tính diện tích ABNC.
Cho tam giác ABC vuông tại A ( AB>AC) , đường trung tuyến AM . Qua M kẻ đường thẳng vuông góc với AM cắt AB tại E và cắt AC tại F . Kẻ AH vuông góc với BC ( H thuộc BC ) , AH cắt EF tại I . CMR :
a, Góc BAM = góc ABM
b, Góc ACB = góc AEF từ đó suy ra hai tam giác MBE và MFC đồng dạng
c, AB.AE=AC.AF
d,\(\frac{S_{ABC}}{S_{AFE}}=\left(\frac{AM}{AI}\right)^2\)