Cho tam nhọn ABC có trực tâm H và nội tiếp đường tròn (O) đường kính AD = 2R.
a) Chứng minh tứ giác BHCD là hình hình hành.
b) Kẻ OI vuông góc với BC tại I. Chứng minh I, H, D thẳng hàng.
c) Chứng minh AH = 2OI d)\(AH^2+BC^2\)=4\(R^2\)
Cho tam giác ABC nhọn nội tiếp (O) đường cao AK, trực tâm H.
a, CM: AK.HK = KB.KC.
b, Kẻ AD là đường kính. CM tứ giác ABCD là hình bình hành.
c, Kẻ OM vuông góc BC. CM: AH = 2MO.
cho tam giác ABC nội tiếp đường tròn tâm O có AD,CF,BE là đường cao giao nhau tại H có M là trung diểm của BC
cm tứ giác BFEC nội tiếptứ giác DFEM nội tiếpCho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn ( O, R) , AD là đường cao của tam giác ABC và AM là đường kính của đường tròn (O), gọi E là hình chiếu của B trên AM. a) CMR : góc ACM = 90° và BAC=MAC b) CMR : Tứ giác ABDE nội tiếp c) CM : DE // MC
cho đường tròn (O) và BC là đây cung cố định nhỏ hơn đường kính .Lấy điểm A trên cung lớn BC sao cho Δ ABC nhọn và AB<AC .Gọi AD,BE,CF là các đường cao của tam giác ABC . Gọi M là giao điểm của EF và BC
a, cm : MB.MC=ME.MF
b, đường thẳng đi qua D và song song với EF , cắt AB và AC lần lượi tại P và Q .
cm : Δ DEF là tam giác cân tại D
Cho tam giác nhọn \(ABC\) (AB<AC) nội tiếp đường tròn (O), trực tâm H, đường cao AE. Gọi M là trung điểm của BC. Đường thẳng vuông góc với MH tại H cắt AB và AC theo thứ tự tại I và K. J là một điểm thuộc đoạn AE sao cho góc BJC=90.
a) CMR: HI=HK
b) CMR: dt(\(BJC \))^2 = dt(ABC).dt(HBC)
c) Gọi Q là một điểm trên (O) sao cho góc AQH=90. CMR 3 điểm Q,H,M thẳng hàng
Cho tam giác ABC, các đường cao AD,BE,CF. Gọi H là trực tam của tam giác.
a) Chứng minh A, E, H, F cùng nằm trên một đường tròn xác định tâm I.
b) Gọi O là trung điểm BC. Chứng minh OE là tiếp tuyến đường tròn tâm I.
Cho tam giác nhọn ABC nội tiếp đường tròn (O) (AB<AC).Gọi H là trực tâm, gọi M là giao điểm của AH với đường tròn (O). Vẽ đường kính AK của (O)
a)Chứng minh tứ giác BHCK là hình bình hành
ai giúp mik vs