Bài 4: cho tam giác cân ABC nội tiếp đường tròn (O), cung nhỏ BC có số đo bằng 1000. Tia AO cắt cung nhỏ AC ở E.
a, Tính số đo các góc ở tâm BOE, COE
b, Tính số đo các cung nhỏ AB, AC.
Bài 1: Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O;R); các đường cao BE,CF cắt nhau tại H. Đường thẳng EF cắt đường tròn ngoại tiếp tam giác ABC tại M,N ( M nằm trên cung nhỏ AB)
1) Chứng minh tam giác AMN can
2) Giả sử AH cắt BC tại D. Chứng minh rằng: \(AM^2=AH.AD\)
3) Gọi P là điểm đối xứng với A qua O. Đường thẳng PN cắt đường thẳng BC tại K. Chứng minh rằng AK vuông góc với HN.
Bài 2: Cho đường tròn tâm O đường kính AB và P là một điểm di động trên đường tròn ( P khác A) sao cho \(PA\le PB\).Trên tia đối PB lấy điểm Q sao cho PQ=PA, dựng hình vuông APQR. Tia PR cắt đường tròn đã cho ở điểm C ( C khác P)
1) Chứng minh C là tâm đường tròn ngoại tiếp tam giác AQB
2) Gọi K là tâm đường tròn nội tiếp tam giác APB, Chứng minh K thuộc đường tròn ngoại tiếp tam giác AQB
3) Kẻ đường cao PH của tam giác APB, gọi \(R_1,R_2,R_3\)lần lượt là bán kính các đường tròn ngoại tiếp tam giác APB, tam giác APH và tam giác BPH.Tìm vị trí điểm P để tổng \(R_1+R_2+R_3\)đạt giá trị lớn nhất
Cho (O; R), đường kính AB, dây cung AC. Các tiếp tuyến với đường tròn tại B và C cắt nhau ở D. Biết \(\widehat{ABC}=30^o\), R=2cm
a) Chứng minh: DO // AC
b) Tính độ dài BD, CD
Trên đường tròn (O;R) cho dây AB có độ dài bằng \(R\sqrt{3}\). Gọi K là điểm chính giữa cung nhỏ AB và I là giao điểm của OK với dây cung AB. Cho điểm E di động trên đoạn thẳng BI (E khác B và I) và gọi F là giao điểm thứ hai của KE với đường tròn tâm O. Qua điểm B kẻ đường thẳng vuông góc với KE tại điểm H và cắt AF tại điểm M. Nếu E di động trên dây cung AB để có BF=R. Tìm vị trí của điểm M đối với đường tròn tâm O
Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn .Kẻ các tiếp tuyến SA,SB với đường tròn (A,B là các tiếp điểm).Một đường thẳng đi qua S(không đi qua tâm 0)cắt đường tròn (O;R) tại hai điểm M và N nằm giữa S và N.Gọi H là giao điểm của SO và AB;I là trung điểm MN.Hai đường thẳng OI và AB cắt nhau E
a) Chứng minh IHSE là tứ giác nội tiếp đường tròn
b) Chứng minh : OI.OE=R\(^2\)
c) Cho SO=2R và MN=R\(\sqrt{3}\) .Tính diện tích tam giác ESM theo R
AI GIÚP VVS HELP ME T_T
Cho đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với các cạnh BC,CA,AB tương ứng tại D,E,F. Đường tròn tâm O' bàng tiếp góc BAC của tam giascABC tiếp xúc với BC và phần kéo dài của các cạnh AB,AC tại P,M,N
1. Chứng minh rằng BP=CD
2. Trên đường thẳng MN lấy các điểm I và K sao cho CK // AB, BI//AC .Chứng minh rằng các tứ giác BICE và BKCF là các hình bình hành.
3. Gọi (S) là đường tròn đi qua ba điểm I,K,P. Chứng minh (S) tiếp xúc với các đường thẳng BC,BI,CK
cho đường tròn (O;R) và dây cung BC cố định (BC<2R) . Gọi A là điểm di động trên cung lớn BC sao cho ABC là tam giác có 3 góc nhọn. Các đường cao AD,BE,CF của tam giác cắt nhau tại H . a) CM:tứ giác AEHF nội tiếp đường tròn; xác định tâm I của đường tròn đó.b)CMR:khi điểm A di động thì tiếp tuyến tại E của đường tròn tâm (I) luôn đi qua 1 điểm cố định.c)Xác định vị trí của điểm A để tam giác AEF có diện tích lớn nhất ?
cho tam giác ABC nội tiếp đường tròn O có R=10; góc A =108 độ; góc B=18 độ Tính AB-AC
cho tam giác ABC nội tiếp đường tròn O có R=10; góc A =108 độ; góc B=18 độ Tính AB-AC