Cho các điểm \(A'\left(-4;1\right);B'\left(2;4\right);C'\left(2;-2\right)\) lần lượt là trung điểm các cạnh BC, CA và AB của tam giác ABC.
a) Tính tọa độ các đỉnh của tam giác ABC
b) Chứng minh rằng các trọng tâm của các tam giác ABC và A'B'C' trùng nhau
Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng :
\(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=\dfrac{3}{2}\overrightarrow{MO}\)
Cho lục giác ABCDEF. Gọi M, N, P, Q, S lần lượt là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm ?
Trong mặt phẳng tọa độ oxy cho hình bình hành ABCD có A(0,8). Trung điểm các cạnh DC, BC lần lượt là M(4;-1) và N(2;5). Tìm G là trọng tâm tam giác ABC?
cho điểm A nằm ngoài đường tròn ( O;R ) . vẽ hai tiếp tuyến AB,AC của ( O ) ( B,C ) là các tiếp điểm .
a) chứng minh AO vuông góc với BC tại H
b) vẽ đường kính BD cũa ( O ) , AD cắt ( O ) tại E ( E khác D )
Cm DE.DA= 4R2( r bình )
c) vẽ OF vuông góc với DE tại F .Tiếp tuyến tại D của (O) cắt tia OF tại K .Tia KE cắt AB tại I . CM IB = IE
Cho A(1;3); B(2;-4); C(-3;5); D(-4;-5)
a) Tìm M sao cho \(2\overrightarrow{AM}+3\overrightarrow{AB}-4\overrightarrow{AC}=\overrightarrow{0}\)
b) Tìm D sao cho tứ giác ADIG là hình bình hành với G trọng tâm tam giác ABC, I trung điểm AC.
c) Tìm giao điểm của hai đoạn thẳng AB và CD
BÀI 6: Trong mp Oxy cho các điểm A( 3;3) , B (-2;4) C (1;5)
a) Tìm tọa độ trọng tâm G của tam giác ABC.
b) Gọi M là trung điểm AC . Tìm E để ABEM là hình bình hành
c) Tìm điểm K thuộc đường thẳng y x = − 2 1 sao cho tam giác ACK cân tại K. Tính diện tích tam giác ACM
huhuhhh giúp em với ạ , em cám ơnnn
Cho hình bình hành ABCD. Gọi E là điểm thỏa mãn 4 \(\overrightarrow{DE}\) = \(\overrightarrow{DC}\) và G là trọng tâm tam giác ABE. Đường thẳng AG cắt BC tại F. Biểu diễn \(\overrightarrow{AG}\) theo \(\overrightarrow{AB}\) , \(\overrightarrow{AD}\) và tính tỉ số \(\dfrac{BF}{BC}\)
Cho tam giác ABC có trung tuyến AD, trọng tâm G, I là trung điểm AG, K thuộc đoạn AB. AK=1/5 AB, phân tích các vecto sau qua vecto CA, vecto CB a. Vecto AI b. Vecto AK c. Vecto CI d. Vecto CK