cho tam giác ABC nhọn AB<AC nội tiếp đường tròn tâm O. BD và CE là đường cao cắt nhau tại H . K là giao điểm của CB và ED .
a) B,E,C,D thuộc đường tròn tâm M
b) cm KB.KC=KE.KD
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O;R), hai đường cao BE và CF cắt nhau tại H.
a) Cm tứ giác BCEF nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác BCEF.
b) Vẽ đường kính AI của (O), tia EF và CB cắt nhau tại M. Chứng minh H, K, I thẳng hàng và cm MB.MC=MF.ME
c) Tia MH cắt AK tại D, MA cắt (O) tại T. Cm T, H, K thẳng hàng
d) Giả sử BÂC=60°. Tính bán kính của đường tròn ngoại tiếp tứ giác DEFH theo R.
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD hai đường chéo AC và BD cắt nhau tại I kẻ IE vuông góc với ad A : CM DC ie nội tiếp B: ca là tia phân giác của góc bce C: gọi K là tâm của đường tròn ngoại tiếp tam giác CIE,CM : kbd thẳng hàng
Cho\(\Delta ABC\) nhọn nội tiếp (O) , hai đường cao BE và AD cắt nhau tại H
a) chứng minh 4 điểm C, H, D, E cùng thuộc 1 đường tròn
b) Ở ngoài \(\Delta ABC\) vẽ nửa đường tròn đường kính AC, đường thẳng BE cắt đường tròn đó tại F. CM : \(AF^2=AH.AD\)
cho tam giác ABC có ba góc nhọn (AB∠AC) nội tiếp đường tròn (o) vẽ tiếp tuyến tại A của đường tròn(o) cắt đường thẳng BC tại S tia phân giác của góc BAC cắt BC tại K và cắt đường tròn (o) tại E ,OE cắt dây BC tại I a/ chứng minh:SA2 =SB*SC b/chứng minh:OE⊥BC tại I d/vẽ tiếp tuyến SD của đường tròn (o) D là tiếp điểm D khác A . chứng minh:tứ giác SAOD nội tiếp được đường tròn và I
Cho (O) đường kính BC =2R. Gọi A là một điểm trên đường tròn này sao cho AB =R. Đường tròn (I) đường kính AC cắt BC tại D. a/ CM : Tứ giác ADOI nội tiếp. Xác định tâm đường tròn nội tiếp tứ giác ABOI theo R. b/ Tứ giác ABOI là hình gì ? Tính diện tích tứ giác ABOI theo R. c/ Một đường thẳng bất kì qua B cắt đường tròn đường kính AC tại M,N.CMR : BM.BN = R2
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b) Đường thẳng EF cắt đường thẳng BC tại K. Chứng minh KE.KF=KB.KC
c) Gọi M là giao điểm của AK và (O). Chứng minh góc KAC= góc KFM
d) Chứng minh M;H;I thẳng hàng