cho tam giác ABC nhọn ABC nội tiếp đường tròn (O).E là điểm chính giữa cung nhỏ BC. Gọi M là điểm trên cạnh AC sao cho EM=MC( M khác C) N là giao điểm BM với đường tròn tâm O ( N khác B). Gọi I là giao điểm của BM và AE, K là giao điểm của AC với EN. c/m tứ giác EKMI nội tiếp
Cho tam giác nhọn ABC nội tiếp đường tròn ( O ) . Gọi E là điểm nằm chính giữa cung nhỏ BC. a) Cm : góc CAE = góc BCE b) Trên cạnh AC lấy điểm M sao cho E M = E C , N là giao điểm ( N ≠ B ) . gọi I là giao điểm của MB và AE , K là giao điểm của AC với EN. cm EKMI là tứ giác nội tiếp. mn, các anh các chị giúp e vs, giải đc sẽ tick đúng cho mn 3 lần luôn ạ. chốt 9h tối nay ạ.
53.Cho tam giác ABC cân tại A.Gọi O là trung điểm BC.Vẽ OH,OK lần lượt vuông góc với AB,AC(Hϵ AB,Kϵ AC).
a)C/m AH,AK là các tiếp tuyến của đường tròn (O;OH).
b)Gọi I là 1 điểm trên cung nhỏ HK của đường tròn (O).Vẽ tiếp tuyến đường tròn (O) tại I cắt AB,AC lần lượt tại M,N.C/m chu vi tam giác AMN=AH+AK.
c)C/m góc MON=góc B=góc C.
d)C/m các tam giác BMO,OMN,CON đồng dạng vs nhau.
Trên đường tròn (O) dựng dây BC không đi qua tâm. Trên tia đối của tia BC. Lấy điểm M. Đường thẳng đi qua M cắt đường tròn (O) lần lượt tại N và P, sao cho O nằm trong góc PMC. Trên cung nhỏ NP lấy điểm A sao cho cung AN bằng cung AP. Nối AB và AC lần lượt cắt NP ở D và E. Chứng minh rằng:
a) Góc ADE= Góc ACB.
b) Tứ giác BDEC nội tiếp.
c) MB.MC=MN.NP.
d) Nối OK cắt NP tại K. Chứng minh MK2>MB.MC
giải chi tiết giúp mk vs! mk đang cần gấp
Cho đường tròn (O) với dây AB cố định khác đường kính. C là một điểm thuộc cung lớn AB sao cho tam giác ABC nhọn. Gọi M, N lần lượt là điểm chính giữa cung nhỏ AB và cung nhỏ AC. Gọi I là giao điểm của BN và CM.Dây MN cắt AB, AC lần lượt tại H và K. CM: tam giác AKI cân tại K và tứ giác AHIK là hình thoi
Cho (O) ,đường kính BC , A là điểm di động đường tròn (O) . Gọi I là tâm đường tròn nội tiếp tam giác ABC .Khi A di chuyển trên (O) thì :
A, I thuộc cung chứa góc 135 độ dừng trên đoạn AB .
B, I thuộc cung chứa góc 135 độ dừng trên đoạn AC .
C, I thuộc cung chứa góc 135 độ dừng trên đoạn BC .
D, I thuộc cung chứa góc 45 độ dừng trên đoạn BC .
Cho (O) ,đường kính BC , A là điểm di động đường tròn (O) . Gọi I là tâm đường tròn nội tiếp tam giác ABC .Khi A di chuyển trên (O) thì :
A, I thuộc cung chứa góc 135 độ dừng trên đoạn AB .
B, I thuộc cung chứa góc 135 độ dừng trên đoạn AC .
C, I thuộc cung chứa góc 135 độ dừng trên đoạn BC .
D, I thuộc cung chứa góc 45 độ dừng trên đoạn BC .
Anh em giúp tôi mai mình kiểm tra rồi nhé
Câu 1: Cho đường tròn (O; R), lấy B \(\in\) (O) gọi H là trung điểm của đoạn OB. Dây CD vuông góc với OB tại H. Tính số đo cung nhỏ và cung lớn CD
Câu 2: Cho tam giác ABC cân tại A. Vẽ (O) đường kính BC. Đường tròn (O) cắt AB và AC lần lượt tại M và N
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính \(\widehat{MON}\), biết \(\widehat{BAC}\) = \(40^o\)
cho \(\Delta\) ABC cân nội tiếp đường tròn (O;R) , \(\widehat{A}=90^0\) . Gọi H,I lần lượt là trung điểm của AB và AC . Nối OH,OI cắt các cung nhỏ AC,AC lần lượt tại M,N
a) cm OA\(\perp MN\)
b) \(\Delta ABC\) phải thêm điều kiện gì để OMAN là hình thoi