Bạn xem lại đề, AD đâu có bằng AB đâu mà góc AEB= góc ABD
Bạn xem lại đề, AD đâu có bằng AB đâu mà góc AEB= góc ABD
Cho tam giác ABC cân ở A, nội tiếp (O). D là điểm thuộc cung BC không chứa A. Gọi E là giao điểm của BC và AD. C/m:
a) Góc AEB = Góc ABD
b) AE.AD =\(AC^2\)
c) Kết quả câu a, b có thay đổi không nếu D thuộc cung BC chứa A.
Cho tam giác nhọn ABC nội tiếp đường tròn ( O ) . Gọi E là điểm nằm chính giữa cung nhỏ BC. a) Cm : góc CAE = góc BCE b) Trên cạnh AC lấy điểm M sao cho E M = E C , N là giao điểm ( N ≠ B ) . gọi I là giao điểm của MB và AE , K là giao điểm của AC với EN. cm EKMI là tứ giác nội tiếp. mn, các anh các chị giúp e vs, giải đc sẽ tick đúng cho mn 3 lần luôn ạ. chốt 9h tối nay ạ.
Cho ∆ABC có 3 góc nhọn nội tiếp (O). D và E theo thứ tự là điểm chính giữa của cung AB và AC. Gọi giao điểm của DE với AB và AC theo thứ tự là M và N.
a) Chứng minh : CD là phân giác góc BCA
b) Gọi I là giao điểm của BE và CD. Chứng minh tứ giác BDMI nội tiếp
c) Chứng minh : AI vuông góc DE
d) Chứng minh IM // AC
Cho (O) ,đường kính BC , A là điểm di động đường tròn (O) . Gọi I là tâm đường tròn nội tiếp tam giác ABC .Khi A di chuyển trên (O) thì :
A, I thuộc cung chứa góc 135 độ dừng trên đoạn AB .
B, I thuộc cung chứa góc 135 độ dừng trên đoạn AC .
C, I thuộc cung chứa góc 135 độ dừng trên đoạn BC .
D, I thuộc cung chứa góc 45 độ dừng trên đoạn BC .
Cho (O) ,đường kính BC , A là điểm di động đường tròn (O) . Gọi I là tâm đường tròn nội tiếp tam giác ABC .Khi A di chuyển trên (O) thì :
A, I thuộc cung chứa góc 135 độ dừng trên đoạn AB .
B, I thuộc cung chứa góc 135 độ dừng trên đoạn AC .
C, I thuộc cung chứa góc 135 độ dừng trên đoạn BC .
D, I thuộc cung chứa góc 45 độ dừng trên đoạn BC .
Anh em giúp tôi mai mình kiểm tra rồi nhé
Cho tam giác ABC nội tiếp đường tròn tâm O, gọi E,D lần lượt là giao điểm của các tia phân giác trong và ngoài của 2 góc B và C. Đường thẳng ED cắt BC tại I, cắt cung nhỏ BC ở M chứng minh
a) ba điểm AED thẳng hàng
b) chứng minh tứ giác BECD nội tiếp
c) Tìm 2 cặp tam giác đồng dạng
Help!! mời các cao nhân vào giúp
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp (O) có hai đường cao BF và CE cắt nhau tại H, tia AH cắt cạnh BC tại D,gọi S là giao điểm của hai đường thẳng BC và EF. Đoạn thẳng AS cắt (O) tại M
a) Chứng minh: SE.SF=SB.SC=SM.SA
Cho tam giác ABC nhọn (AB>AC),nội tiếp đường tròn (O;R).Các tiếp tuyến tại B và C cắt nhau . Gọi H là giao điểm của OM và BC .Từ M kẻ đường thẳng song song với AC,đường thẳng song song cắt tại E và F (E thuộc cung nhỏ BC),cắt BC tại I ,cắt AB tại K.
a)Chứng minh:MO⊥BC và ME.MF=MH.MO
b)Chứng minh rằng tứ giác MBKC là tứ giác nội tiếp.Từ đó suy ra năm điểm M,B,K,O,C cùng thuộc một đường tròn.
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OK vuông góc với BC.(K nằm trên đường thẳng BC)
1) cm 4 điểm O,K,D,E cùng thuộc 1đường tròn
2) gọi H là điểm đối đối xứng với D qua K . cmr tứ giác BDCH là hình bình hành và H LÀ TRỰC TÂM CỦA TAM GIÁC ABC
3) gọi G là trọng tâm tam giác ABC , cmr 3 điểm H,G,O thẳng hàng