Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a/ Chứng minh: Tứ giác BMNP là hình bình hành.
b/ Gọi I là trung điểm của MP. Chứng minh: Ba điểm B, I, N thẳng hàng.
Cho ABC vuông tại A có AH có đường cao. Gọi D là điểm đối xứng của A qua H. Từ D
kẻ đường thẳng song song với AB lần lượt cắt AC và BC tại K và E.
a. Chứng minh tứ giác ABDK là hình thang vuông
b. Chứng minh tứ giác ABDE là hình bình hành
Cho ABC vuông tại A có AH có đường cao. Gọi D là điểm đối xứng của A qua H. Từ D
kẻ đường thẳng song song với AB lần lượt cắt AC và BC tại K và E.
a. Chứng minh tứ giác ABDK là hình thang vuông
b. Chứng minh tứ giác ABDE là hình bình hành
Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N
a, Chứng minh tứ giác amhn là hình chữ nhật
b, lấy điểm K sao cho n là trung điểm của HK Chứng minh tứ giác amnk là hình bình hành
Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N
a, Chứng minh tứ giác amhn là hình chữ nhật
b, lấy điểm K sao cho n là trung điểm của HK Chứng minh tứ giác amnk là hình bình hành
Cho tam giác ABC có AB<AC, M là trung điểm BC, N là trung điểm đối xứng của A qua D.
a) Chứng minh rằng tứ giác ABNC là hình bình hành
b) Kẻ AH vuông góc với BC. Gọi E, F lần lượt là trung điểm AB, AC. Chứng minh rằng ME=HF suy ra MHEF là hình thang cân.
cho tam giác ABC có đường cao AH . Gợi E và F theo thứ tự là trung điểm của ACvà HC . gọi D là điển đối xứng của A qua F .
a, chứng minh tứ giác ACDH là hình bình hành
b, chứng minh DC vuông góc với BC
c, chứng minh AB +BC > 2BE
Cho hình thang vuông ABCD ( A = D = 90 ° , CD = 2AB ) . Gọi H là hình chiếu của D lên AC . Gọi M , N lần lượt là trung điểm của HC và HD . a / Chứng minh MN = AB . b / Chứng minh tứ giác ABMN là hình bình hành . c / Chứng minh N là trực tâm tam giác AMD và DMB = 90°
Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I a) Biết AB = 8cm. Tính MI b) Chứng minh tứ giác AMCK là hình chữ nhật c) Chứng minh tứ giác ABMK là hình bình hành