Cho tam giác ABC có M là TĐ BC. \(\overrightarrow{AI}=-\frac{1}{2}\overrightarrow{MI}\). Điểm K thuộc AC sao cho B, I, K thẳng hàng. Khi đó \(\overrightarrow{KA}=\frac{m}{n}\overrightarrow{CK}\) thì giá trị P = 25m + 6n + 2019 ?
cho tam giác abc với trọng tâm g và i là trung điểm của ac. gọi k thuộc ac sao cho \(\overrightarrow{AK}=x\overrightarrow{AC}\). tìm x để ba điểm b, i, k thẳng hàng
Cho ΔABC có M nằm trên cạnh BC sao cho CM = \(\frac{1}{2}\) BC K là trung điểm AM, đặt \(\overrightarrow{BA}=\overrightarrow{a}\) , \(\overrightarrow{BC}=\overrightarrow{c}\) . Chứng minh: \(\overrightarrow{BK}=\frac{1}{2}\overrightarrow{a}+\frac{1}{3}\overrightarrow{c}\) . Gọi I là điểm trên cạnh AC sao cho \(\overrightarrow{AI}=\frac{2}{5}\overrightarrow{AC}\) . Chứng minh : B, I, K thẳng hàng.
Tam giác ABC có M trung điểm BC . G là trọng tâm . N trung điểm MC. Gọi E,F,K là các điểm xác định bởi \(\overrightarrow{EN}+\overrightarrow{EA}+\overrightarrow{EC}=\overrightarrow{0}\), \(\overrightarrow{FG}+\overrightarrow{FC}=\frac{1}{2}\overrightarrow{BM}\),\(\overrightarrow{KG}+\overrightarrow{KA}=\overrightarrow{BC}\)
Xác định các điểm F, K, E
Cho tam giác ABC, M là một điểm trên cạnh BC sao cho MB=2MC
1) Biểu thị \(\overrightarrow{AM}\) theo \(\overrightarrow{AB}\) và\(\overrightarrow{AC}\)
2) Chứng minh \(\overrightarrow{v}=\overrightarrow{NB}+\overrightarrow{NC}-2\overrightarrow{NA}\) không phụ thuộc vào vị trí điểm N. Hãy dựng \(\overrightarrow{AD}=\overrightarrow{v}\)
3) Gọi K là trung điểm cạnh AC, điểm I nằm trên đoạn AM sao cho \(\overrightarrow{AI}=x\overrightarrow{AM}\). Tìm số x để ba điểm B, I, K thẳng hàng.
4) Cho điểm K di động thỏa mãn: \(\overrightarrow{KE}=2\overrightarrow{KA}+2\overrightarrow{KB}-\overrightarrow{KC}\). Chứng minh KE đi qua một điểm cố định
Cho tam giác ABC. Gọi D, M lần lượt là các điểm sao cho: \(\overrightarrow{AD}=2\overrightarrow{AB}-\overrightarrow{CA}\), \(\overrightarrow{BM}=k\overrightarrow{CB}-\overrightarrow{AB}\) với \(k\in R\).
a) Tìm k để đường thẳng DM đi qua trung điểm N của đoạn thẳng BC.
b) Tính \(\frac{ND}{MN}\).
Cho tam giác ABC và M là trung điểm BC.a) Chứng minh rằng: \(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{BM}+\overrightarrow{AC}\)b) Cho hai điểm E,K thỏa mãn: \(\overrightarrow{EA}=-3\overrightarrow{EM}\) và \(5\overrightarrow{AK}=3\overrightarrow{AC}\). Chứng minh ba điểm B,E,K thẳng hàng.
Cho tam giác ABC cân tại A và điểm M bất kì nằm trong tam giác. Qua M kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại D,E. Dựng MK vuông góc với BC tại K gọi I là trung điểm BC. CMR: \(2\overrightarrow{MK}+\overrightarrow{MD}+\overrightarrow{ME}=2\overrightarrow{MI}\)
Cho tam giác ABC. Gọi D, E lần lượt là các \(\overrightarrow{BD}=\frac{1}{3}\overrightarrow{BC};\overrightarrow{AE}=\frac{3}{4}\overrightarrow{AC}\). Tìm vị trí của điểm K trên AD sao cho 3 điểm B, K, E thẳng hàng.