Cho tam giác ABC. Trên cạnh AB và AC, theo thứ tự lấy các điểm E và D sao cho BE = CD. Gọi N, Q theo thứ tự là trung điểm của BD và CE. Gọi G và H lần lượt là giao điểm của NQ với AB và AC. CMR: tam giác AGH cân.
Cho tam giác ABC . Lấy các điểm D ; E theo thứ tự thuộc các tia đối của các tia BA ; CA sao cho BD=CE=BC . Gọi O là giao điểm của BE và CD . Qua O vẽ đường thẳng song song với tia phân giác của góc A , đường thẳng này cắt AC ở K . CMR : AB = CK
Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD, CE.
Chứng minh rằng
a) EDCB là hình thang
b) I là trung điểm của BD và K là trung điểm của CE
c) MI = IK = KN
Cho tam giác ABC, lấy D thuộc cạnh AB, E thuộc AC sao cho BD = CE. Gọi M, N, I, K lần luowj là trung điểm của BE, CD, DE, DC.Chứng minh DK vuông góc MN
câu 1:cho tam giác abc, điểm d thuộc cạnh bc. qua d kẻ đường thẳng song song với ac, ab , chúng cắt ab , ac theo thứ tự ở e, f . cm
\(\frac{ae}{ab}\)+\(\frac{af}{ac}\)=1
câu 2 : Cho tam giác abc(ab<ac), đường phân giác ad. Qua trung điểm m của bc , kẻ đường thẳng song song với ad , cắt ac và ab theo thứ tự ở e và k .cm
a)ae=ak
b)bk=ce
Cho tam giác ABC gọi D,E,F theo thứ tự là trung điểm của BC,AC,AB. Lấy các điểm I,K trên cạnh BC sao ho BI=IK=KC.M là giao điểm của AI và DF, N là giao điểm của AK và DE. chứng minh MN//BC
Cho tam giác ABC (AB<AC), đường cao AH. Gọi M, N, E theo thứ tự là trung điểm của AB, AC, BC.
a) Tứ giác AMEN là hình gì? Vì sao?
b) CM: tứ giác MNEH là hình thang cân
c) Tam giác ABC cần có thêm điều kiện gì để MNEH là hình vuông.
Bài 1: Cho hình bình hành ABCD. Trên BD lấy điểm E, gọi F là điểm đối xứng với C qua E. Qua F, kẻ Fx song song với AD, Fy song song với AB; Fx cắt AB tại I, Fy cắt AD tại K. Chứng minh rằng: I, K, E thẳng hàng
Bài 2: Cho hình thang ABCD có đáy lớn CD. Qua A kẻ đường thẳng AK song song với BC. Qua B kẻ đường thảng BI song song với AB. BI cắt AC ở F, AK cắt BD ở E. Chứng minh rằng:
a) EF // AB;
b) AB^2 = CD. EF
Bài 3: Cho hình bình hành ABCD, điểm E thuộc cạnh AB, điểm F thuộc cạnh AD. Đường thẳng qua D và song song với EF cắt AC ở I. Đường thẳng qua B và song song với EF cắt AC ở K. Chứng minh rằng:
a) AI = CK
b) AB/AE + AD/AF = AC/AN ( N là giao điểm của EF và AC)
Bài 4: Cho hình bình hành AABCD. Đường thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. Chứng minh rằng:
a) DM2 = MN.MK
b) DM/DN + DM/DK = 1
Bài 5: Cho hình thoi ABCD. Qua C kẻ đường thẳng d cắt các tia đối của các tia BA, CA theo thứ tự ở E và F. Chứng minh rằng:
a) EM/AB = AD/DF
b) EBD đồng dạng với BDF;
c) Góc BID bằng 120 độ ( I là giao điểm của DE và BF)
Bài 6: Cho cân tại A có BC = 2a. M là trung điểm của BC. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho
CMR: Tích BD.CE không đổi
CMR: DM là phân giác của góc
Tính chu vi của AED nếu ABC đều
Bài 7: Cho ( AB khác AC) Gọi E và F theo thứ tự là các hình chiếu của B và C trên tia phân giác của góc A. Gọi K là giao điểm của các đường thẳng FB và CE. Chứng minh rằng: AK là tia phân giác của góc ngoài tại đỉnh A của
Bài 8: Cho hình thang ABCD( AB //CD). M là trung điểm của cạnh CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC
a) Chứng minh rằng: IK//AB
b) Đường thẳng IK cắt AD và BC theo thứ tự ở E và F. Chứng minh IE = IK = KF