Bất đẳng thức tam giác
AB+AC>BC
Với tam giác Abc có :AB+BC/.CA :AB+AC>BC;AC+BC>AC
từ bất đẳng thức tam giác ,ta cũng có :AB>CA-CB; AC>BC-BA ;BC>AC-AB
Một cách chứng minh khác của bất đẳng thức tam giác :
Cho tam giác ABC. Giả sử BC là cạnh lớn nhất. Kẻ đường vuông góc AH đến đường thẳng BC \(\left(H\in BC\right)\)
a) Dùng nhận xét về cạnh lớn nhất trong tam giác vuông ở bài 1 để chứng minh AB + AC > BC
b) Từ giả thiết về cạnh BC, hãy suy ra hai bất đẳng thức tam giác còn lại
Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạn AC
a) So sánh IB với MI + IA, từ đó chứng minh MA + MB < IB +IA
b) So sánh IB với IC + CB, từ đó chứng minh IB + IA < CA + CB
c) Chứng minh bất đẳng thức MA + MB < CA + CB
Chứng minh :
+ AB+BC > AC
+ AC+BC > AB
< * Không dùng bất đẳng thức tam giác >
Cho tam giác ABC, điểm O nằm trong tam giác, tia BO cắt cạnh AC tại I. a) So sánh OA và IA + IO, từ đó suy ra OA + OB < IA + IB; b) Chứng minh: OA + OB < CA + CB; c) Chứng minh: (AB+AC+BC) /2 < OA + OB + OC < AB + BC + CA
Chứng minh "bất đẳng thức tam giác mở rộng" : Với ba điểm A, B, C bất kì ta có :
\(AB+AC\ge BC\)
Cho tam giác ABC cân AB = AC. Lấy E và F trên cạnh AB và AC sao cho BE=CF
a)Chứng minh tam giác AEF là tam giác cân
b)Chứng minh góc AEF = góc ACB
c) Lấy điểm K trên tia đối của tia CB sao cho CK=EF. Chứng minh tam giác FBK cân tại F
d)Chứng minh BC+EF < 2 BF
Cho tam giác ABC.Chứng minh các bất đẳng thức: AB+BC>AC; AC+BC>AB
em hãy chứng minh trong tam giác ABC có CA+CB>AB và BA+BC>CA