cho tam giác ABC vuông tại A,điểm M và N lần lượt là chung điểm của các cạnh BC,AC;gọi D đối xứng N qua M.tia AM cắt CD tại E.Chứng minh tứ giác BDCN là hình bình hành
Cho tam giac ABC có AB<AC . Lấy D, E lần lượt là trung điểm của AB, AC.
d) Chứng minh tứ giác BDEC là hình thang.
e) Gọi M là điểm đối xứng của B qua E. Chứng minh: Tứ giác ABCM là hình bình hành.
f) Gọi N là điểm đối xứng của C qua D. Chứng minh ba điểm N, A, M thẳng hàng.
Cho tam giác ABC nhọn(AB>BC).Gọi M,N,P lần lượt là trung điểm AB,AC,BC.Trên tia đối tia NM lấy D sao cho ND=NM.Chứng minh a) Tứ giác BMNP là hình bình hành b)BN//DP c)PN đi qua trung điểm AD d)Gọi MC cắt PD ở E. Chứng minh DE=2PE
Cho tam giác ABC có AB<AC, M là trung điểm BC, N là trung điểm đối xứng của A qua D.
a) Chứng minh rằng tứ giác ABNC là hình bình hành
b) Kẻ AH vuông góc với BC. Gọi E, F lần lượt là trung điểm AB, AC. Chứng minh rằng ME=HF suy ra MHEF là hình thang cân.
Bài 1/ Cho tam giác ABC vuông tại A.Gọi E, F lần lượt là trung điểm của AB, AC. a/ Tính BC biết EF = 4cm. b/ Gọi M là điểm đối xứng của E qua F. cm tứ giác AECM là hình bình
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a/ Chứng minh: Tứ giác BMNP là hình bình hành.
b/ Gọi I là trung điểm của MP. Chứng minh: Ba điểm B, I, N thẳng hàng.
ài 4. (3,5 điểm) Cho hình vuông ABCĐ, O là giao điểm của AC và BD, M là trung điểm của BC. Gọi E
là điểm đối xứng của A qua M.
a) Chứng minh tứ giác ABEC là hình bình hành;
b) Gọi N là trung điểm của CD. Chứng minh tứ giác OMCN là hình vuông:
c) Chứng minh M là trực tâm của tam giác BEN;
d) Gọi / là giao điểm của AC và MN, F là trung điểm AI. Kẻ IK vuông góc với NF tại K.
Chứng mình AKM =90°.
cho tam giác ABC nhọn các đường cao AD và BE cắt nhau tại H. gọi M là trung điểm của BC điểm P đối xứng với điểm H qua đường thẳng BC. Điểm Q đối xứng với điểm H qua M.
a) chứng minh PQ // BC. khi đó tứ giác DMQP là hình gì? vì sao?
b)chứng minh tứ giác HCQP là hình bình hành. Tính số đo góc ACQ,góc ABQ.
c) Gọi O là giao điểm các đường trung trực của tam giác ABC. CMR O cách đều 5 điểm A, B, P, Q,C
Cho hình bình hành ABCD có E và F lần lượt là trung điểm của AB và DC. Gọi M,N lần lượt là giao điểm của AC với DE và BF.
a) CM: Tứ giác DEBF là hình bình hành
b) CM: AM=MN=NC
c) MN cắt EF tại O. CM: B đối xứng với D qua O.