Xem lại đề chuẩn không ? Nếu đề đúng thì \(\overrightarrow{AM}=\dfrac{1}{4}\overrightarrow{AB}+0\overrightarrow{AC}\)
Xem lại đề chuẩn không ? Nếu đề đúng thì \(\overrightarrow{AM}=\dfrac{1}{4}\overrightarrow{AB}+0\overrightarrow{AC}\)
cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng
Cho tam giác ABC, gọi M là điểm thuộc cạnh BC sao cho MB = 2 MC, biểu diễn \(\overrightarrow{AM}=m\overrightarrow{AB}+n\overrightarrow{AC}\). Giá trị m.n bằng...
Cho tam giác ABC, gọi M, N lần lượt là các điểm thuộc cạnh AB, AC sao cho AM = 1/2 MB; AN = 3NC, K là trung điểm MN. Biểu thị \(\overrightarrow{AK}=m.\overrightarrow{AB}+n.\overrightarrow{AC}\), tích m.n = ...
Cho tam giác ABC, M là một điểm trên cạnh BC sao cho MB=2MC
1) Biểu thị \(\overrightarrow{AM}\) theo \(\overrightarrow{AB}\) và\(\overrightarrow{AC}\)
2) Chứng minh \(\overrightarrow{v}=\overrightarrow{NB}+\overrightarrow{NC}-2\overrightarrow{NA}\) không phụ thuộc vào vị trí điểm N. Hãy dựng \(\overrightarrow{AD}=\overrightarrow{v}\)
3) Gọi K là trung điểm cạnh AC, điểm I nằm trên đoạn AM sao cho \(\overrightarrow{AI}=x\overrightarrow{AM}\). Tìm số x để ba điểm B, I, K thẳng hàng.
4) Cho điểm K di động thỏa mãn: \(\overrightarrow{KE}=2\overrightarrow{KA}+2\overrightarrow{KB}-\overrightarrow{KC}\). Chứng minh KE đi qua một điểm cố định
Cho tam giác ABC có trung tuyến AM, gọi I là trung điểm AM, J đối xứng với I qua M và K là điểm trên cạnh AC sao cho \(\overrightarrow{AK}=\frac{1}{4}\overrightarrow{AC}\), biểu diễn \(\overrightarrow{JK}=m\overrightarrow{AB}+n\overrightarrow{AC}\), giá trị m = ...
1.Cho △ABC. Gọi M;N lần lượt là trung điểm AB và BC. Đặt\(\overrightarrow{CM}=\overrightarrow{a};\overrightarrow{AN}=\overrightarrow{b}\).Biểu diễn các véc tơ \(\overrightarrow{AB};\overrightarrow{BC};\overrightarrow{CA}\) theo \(\overrightarrow{a};\overrightarrow{b}\)
2.Cho △ABC.Trên đường thẳng AB lấy điểm M sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\).Hãy phân tích véc tơ \(\overrightarrow{CM}\)theo hai véc tơ \(\overrightarrow{u}=\overrightarrow{CA};\overrightarrow{v}=\overrightarrow{CB}\)
3. Cho △ABC. Gọi M;N;P lần lượt trên cách cạnh AB;BC;CA của △ABC sao cho MB =2MA;NC=2NB;PA=2PC.CMR : \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{0}\)
Cho tam giác ABC, gọi M là trung điểm AB, D là trung điểm BC, N thuộc cạnh AC sao cho \(\overrightarrow{CN}=2\overrightarrow{NA}\), K là trung điểm MN. Biểu diễn \(\overrightarrow{KD}=m\overrightarrow{AB}+n\overrightarrow{AC}\), giá trị m - n = ...
Cho 1 tam giác ABC gọi M , N là các điểm sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\) , \(\overrightarrow{3NA}+2\overrightarrow{NC}=\overrightarrow{0}\)
a/ Dựng 2 điểm MN
b/ Tính theo 2 vecto AB và AC
c/ C/m M ,N ,G thẳng hàng
Cho tam giác ABC, gọi M là trung điểm của AB, N là điểm thuộc cạnh AC sao cho \(\overrightarrow{CN}=2\overrightarrow{NA}\), K là trung điểm MN, biểu diễn \(\overrightarrow{AK}=m.\overrightarrow{AB}+n.\overrightarrow{AC}\) thì giá trị n = ...