Cho tam giác ABC vuông ở A có AB < AC. Trên AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh DE = BC.
b) Chứng minh DE vuông góc với BC.
c) Nếu cho biết 4 lần góc B = 5 lần góc C. Tính góc AED.
Cho tam giác ABC vuông tại A và AB < AC . Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh DE = BC
b) Chứng minh DE vuông góc với BC.
c) Biết 4gócB = 5gócC. Tính góc AED
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Cho tam giác nhọn ABC. Trên nửa mặt phẳng bờ AB ko chứa C,lấy D sao choAD=AB và AD vuông góc với AB. Trên nửa mặt phẳng bờ AC ko chứa B lấy E sao cho AE=AC và AE vuông góc với AC. Kẻ AH vuông góc với BC tại H. AH cắt DE tại K. Chứng minh K là trung điểm của DE
BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNH
Bài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng :
a) AE = BC; b)AB // EC
Bài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BC
Bài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân giác của góc xOy cắt AB ở C. Chứng minh rằng
a) C là trung điểm của AB
b) AB vuông góc với OC
Bài 4: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác của góc BAC và DAE
Bài 5: Cho tam giác ABC có góc A = 1000, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA
a) Tính số đo góc ABK
b) về phía ngoài tam giác ABC, vẽ các đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh rằng: tam giác ABK bằng tam giác DAK
c) Chứng minh MA vuông góc với DE
Bài 6: Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Chứng minh rằng DE//BC và DE = 1/2 BC
Bài 7: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh rằng AM =1/2BC
Bài 8: Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC
a) Chứng minh rằng DE vuông góc với BC
b) Cho biết 4B = 5C trung điểm của BC. Chứng minh rằng :
a) FH = 2DE.
b) FH vuông góc với DE.
Cho tam giác ABC , M là trung điểm của BC . TRên nửa mặt phẳng không chứa C có bờ AB , vẽ tia Ax vuông góc với AB . Trên tia đó lấy điểm D sao cho AD = AB . Trên nửa mặt phẳng không chứa B có bờ AC , vẽ tia Ay vuông góc với AC , trên tia đó lấy điểm E sao cho AE = AC . Chứng minh rằng :
a, AM = \(\frac{DE}{2}\)
b, AM vuông góc với DE
Cho tam giác ABC , M là trung điểm BC . Trên nửa mặt phẳng không chứa điểm C có bờ AB, vẽ tia Ax vuông góc AB . Trên tia đó lâý điểm D sao cho AD = AB . Trên nửa mặt phẳng không chứa B có bờ AC vẽ tia Ay vuông góc AC . Trên tia đó lấy điểm E sao cho AE = AC . Chứng minh:
a)AM = \(\frac{DE}{2}\)
b) AM vuông góc DE
c) DC vuông góc BE
Cho góc vuông xAy. Trên tia Ax lấy 2 điểm B và D, trên tia Ay lấy 2 điểm C và E sao cho AB = AC và AD = AE.
a) Chứng minh tam giác ACD và tam giác ABE bằng nhau
b) Chứng minh tam giác BOD và COE bằng nhau. Với Ola giao điểm của DC và BE.
c) Chứng minh AO vuông góc với DE
giúp mk