Cho tam giác ABC vuuong cân tại đỉnh A. Gọi D là trung điểm của cạnh BC. Qua D dựng đường thẳng vuông góc với AB tại M. Lấy điểm N đối xứng với D qua M. Từ giao điểm P của AB và CN, hạ đoạn thẳng PQ vuông góc với BC tại Q. Các tia CP và QM cắt nhau tại E.
a) Chứng minh tứ giác MPDQ nội tiếp một đường tròn.
b) Chứng minh BE vuông góc với CN.
c) Chứng minh tia EC là tia phân giác của góc AEQ
cho tam giác ABC nhọn có các đường cao AD,BE,CF.M là điểm bất kì nằm giữa D và F .từ M kẻ đt song song vs BC cắt DE tại N.I là điểm thuộc DE sao cho góc MAI = góc BAC.CMR
a,tam giác AMN cân
b,tứ giác AMNI nội tiếp
c,MA là phân giác của góc FMI
Cho tam giác ABC cân tại A và góc BAC = 150 độ. Dựng tam giác AMB và tam giác ANC sao cho các tia AM, AN nằm tròn góc BAC với góc ABM = góc ACN = 90 độ, góc MAB = 30 độ, góc NAC = 60 độ. Trên MN lấy D sao cho ND = 3MD. BD cắt AM và AN lần lượt tại K và E. F là giao điểm của BC và AN. Chứng minh rằng : a) Tam giác NCE cân b) KF//CD
Cho hình thoi ABCD có góc BAD bằng 500, O là giao điểm của AC và BD, H là hình chiếu của điểm O trên AB. Trên tia đối của BC lấy M, trên tia đối của DC lấy N sao cho HM //AN. Tính số đo góc MON.
Cho hình thoi ABCD có góc BAD bằng 500, O là giao điểm của AC và BD, H là hình chiếu của điểm O trên AB. Trên tia đối của BC lấy M, trên tia đối của DC lấy N sao cho HM //AN. Tính số đo góc MON
Cho tam giác ABC trên tia đối của tia CB lấy D sao cho CD = CB, trên tia đối của tia AC lấy E sao cho AE = 2 CA . CMR : Nếu AD = BE thì tg ABC vuông
Cho tam giác ABC có AB ACGH.
1. Chứng minh BH = EC .
2. Vẽ hình bình hành 4EFH . Chứng minh rằng 4F vuông góc với BC.
3. Gọi O là giao điểm các đường trung trực của tam giác ABC, M và N lần lượt là trung điểm của
EH và BC, biết OH = OE . Chứng minh tứ giác AMON là hình bình hành và tính góc BỌC.
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy