Cho tam giác ABC, trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM, cắt AB,AC tại E,F
a) Chứng minh DE+DF không đổi khi D di động trên BC
b) Qua A vẽ đường thẳng song song với BC, cắt FE tại K. CMR K là trung điểm của FE
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O) đường kính BC, biết các tiếp tuyến tại A và B của đường tròn tâm O cắt nhau tại M, \(AH\perp BC\left(H\in BC\right)\). AH cắt CM tại N, AC cắt BM tại D. Trên tia đối của tia AH lấy điểm K sao cho AH = AK. Đường thẳng CK cắt đường tròn (O) và đường thẳng BD lần lượt tại E và F. Tính tỉ số \(\frac{BM}{BF}\) .
Cho tam giác ABC (AB<AC) nối tiếp đường tròn (O) đường kính BC, biết các tiếp tuyến tại A và B của đường tròn tâm O cắt nhau tại M. \(AH\perp BC\left(H\in BC\right)\). AH cắt CM tại N, AC cắt BM tại D. Trên tia đối của tia AH lấy điểm K sao cho AH = AK. Đường thẳng CK cắt đường tròn (O) và đườn thẳng BD lần lượt tại E và F. Tính tỉ số \(\frac{BM}{BF}\)=...
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) và AB < AC. Các tiếp tuyến tại B và C của (O) cắt nhau tại D. Qua D kẻ đường thẳng song song với AB, cắt BC và AC tại M và N.
a) Đường thẳng AD cắt đường tròn tại I, BI cắt DM tại K. Chứng minh K là trung điểm của DM
b) Trên đoạn thẳng BD lấy điểm P sao cho IP // DN, AP cắt BC tại Q. Gọi G là trung điểm DK. Chứng minh ba điểm Q, I, G thẳng hàng.
Cho đường tròn (O;R), đường kính AB. Lấy điểm C tùy ý trên cung AB sao cho AB < AC.
a) Chứng minh tam giác ABC vuông.
b) Qua A vẽ tiếp tuyến (d) với đường tròn (O), BC cắt (d) tại F. Qua C vẽ tiếp tuyến (d’) với đường tròn (O), (d’) cắt (d) tại D. Chứng minh : DA =DF.
c) Hạ CH vuông góc AB (H thuộc AB), BD cắt CH tại K. Chứng minh K là trung điểm CH.
d) Tia AK cắt DC tại E. Chứng minh EB là tiếp tuyến của (O)
Cho tam giác ABC vuông tại A, đường cao AH. Biết CH = 9 cm, BH = 4 cm. Gọi D là điểm đối xứng của A qua BC và E là giao điểm của hai tia CA và DB. Qua E kẻ đường thẳng vuông góc với BC cắt đường thẳng BC tại F và cắt đường thẳng AB tại G. Qua C kẻ đường thẳng song song với AG cắt đường thẳng AD tại K.
a) Tính độ dài đường cao AH và cạnh AB của tam giác ABC
b) Chứng minh AC^2 = CH.HB + AH.HK
c) Chứng minh FA là tiếp tuyến của đường tròn đường kính BC
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF