Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy
cho tam giác ABC đường cao AH
a) c/m : △ABC đồng dạng với △HBA
b) gọi M ,N lần lượt là trung điểm của AB và BC .đường thẳng d vuông vs BC tại D cắt MN tại I .c/m :IB2 =IM . IN
c) gọi E là giao điểm của IC và EH .c/m : E là trung điểm của AH
Cho tam giac ABC có đường thẳng d đi qua B. Từ diểm E bất kì trên AC kẻ đường thẳng song song AB AC lần lượt cắt d tại M và N. Gọi D là giao điểm của ME và BC. Đường thẳng NE cắt AB và MC lần lượt tại F và K. Chứng minh:
a)AFN \(\sim\) MDC
b)AN//MK
Cho tam giác ABC có góc B là góc nhọn. Gọi D là điểm đối xứng của B qua trung điểm của AC. Gọi H, K lần lượt là hình chiếu vuông góc của A trên hai đường thẳng BC, CD. Khi góc B bằng 30 độ. Tính tỉ số diện tích tam giác AHK và diện tích hình bình hành ABCD
Cho tam giác ABC có góc B là góc nhọn. Gọi D là điểm đối xứng của B qua trung điểm của AC. Gọi H, K lần lượt là hình chiếu vuông góc của A trên hai đường thẳng BC, CD. Khi góc B bằng 30 độ. Tính tỉ số diện tích tam giác AHK và diện tích hình bình hành ABCD
Cho tam giác ABC có góc B là góc nhọn. Gọi D là điểm đối xứng của B qua trung điểm của AC. Gọi H, K lần lượt là hình chiếu vuông góc của A trên hai đường thẳng BC, CD. Khi góc B bằng 30 độ. Tính tỉ số diện tích tam giác AHK và diện tích hình bình hành ABCD
Cho tam giác ABC có góc B là góc nhọn. Gọi D là điểm đối xứng của B qua trung điểm của AC. Gọi H, K lần lượt là hình chiếu vuông góc của A trên hai đường thẳng BC, CD. Khi góc B bằng 30 độ. Tính tỉ số diện tích tam giác AHK và diện tích hình bình hành ABCD