a: Xét tư sgiác APDQ có
AP//DQ
AQ//DP
Do đó: APDQ là hình bình hành
b: \(C_{APDQ}=\left(AP+AQ\right)\cdot2=10\left(cm\right)\)
c: Vì APDQ là hình bình hành
nên AD cắt PQ tại trung điểm của mỗi đường
=>P và Q đối xứng nhau qua I
a: Xét tư sgiác APDQ có
AP//DQ
AQ//DP
Do đó: APDQ là hình bình hành
b: \(C_{APDQ}=\left(AP+AQ\right)\cdot2=10\left(cm\right)\)
c: Vì APDQ là hình bình hành
nên AD cắt PQ tại trung điểm của mỗi đường
=>P và Q đối xứng nhau qua I
Cho tam giác ABC cân tại A,đường cao AD. Gọi E là trung điểm của AC, f là điểm đối xứng với điểm D qua E a/ tứ giác ADCF là hình gì ? Vì sao? b/ chứng minh AF = BD c/gọi N là điểm đối xứng với A qua D. Chứng minh tứ giác ABNC là hình thoi d/tìm điều kiện của tam giác ABC để hình chữ nhật ADCF là hình vuông?
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Gọi D là điểm đối xứng với B qua M.
a) Chứng minh tứ giác ABCD là hình bình hành.
b) Gọi N là điểm đối xứng với B qua A. Chứng minh tứ giác ACDN là hình chữ nhật.
c) Vẽ đường thẳng qua A song song với MN, cắt BC ở K. Chứng minh KC=2KB.
Cho tam giác ABC vuông tại A , có AB = 3cm , AC=4cm . D là một điểm thuộc cạnh BC , I là trung điểm của AC , E đối xứng với D qua I
a. Tứ giác AECD là hình gì
b. Điểm D ở vị trí nào BC thì AECD là hình chữ nhật ? Giải thích và vẽ hình minh họa.
c. Điểm D ở vị trí nào BC thì AECD là hình thoi? Giải thích và vẽ hình minh họa. Tính đọ dài các cạnh của hình thoi.
Cho tam giac ABC cân tại A, có đường cao AH. Gọi I là trung điểm của AC và E là điểm đối xứng với H qua I.
1. Chứng minh rằng : AC = HE
2. Tứ giác AEHB là hình gì? Vì sao?
3. Tam giác ABC thêm điều kiện gì để tứ giác ABHI là hình thang cân.
4. Tính diện tích tứ giác AECH biết AB = 10cm, BC = 12cm.
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi D là trung điểm của AC, lấy điểm E đối xứng với H qua D.
a) Chứng minh tứ giác AHCE là hình chữ nhật
b) Qua A kẻ AI song song với HE (I ∈ đường thẳng BC). Chứng minh tứ giác AEHI là hình bình hành.
c) Trên tia đối của tia HA lấy điểm K sao cho AH = HK. Chứng minh AK là tia phân giác của góc IAC.
d) Tìm điều kiện của tam giác ABC để tứ giác CAIK là hình vuông, khi đó tứ giác AHCE là hình gì?
Giúp em với ạ :((
Cho tam giác ABC có AB=3cm, AC=4cm. Gọi d là đường trung trực của BC. Vẽ điểm K đối xứng với A qua d
a) Tính độ dài các đoạn thẳng đối xứng với đoạn thẳng AB qua d, đối xứng với đoạn thẳng AC qua d.
b) Tứ giác AKCB là hình gì? Vì sao?
Bài 1. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là trung điểm của AB.
a) Chứng minh tứ giác BKIC là hình thang cân.
b) Lấy N là điểm đối xứng với M qua I. Tứ giác AMCN là hình gì ? Vì sao ?
c) Chứng minh ba đường thẳng AM, BN và IK cùng đi qua một điểm.
Cho AABC vuông tại A, điểm M là trung điểm của BC. Gọi D và E lần lượt là hình chiếu của M trên AB và AC a) Chứng minh: tứ giác ADME là hình chữ nhật. b) Lấy điểm K đối xứng với M qua D. Tứ giác AEDK là hình gì? Vì sao? c) Chứng minh: tứ giác AMBK là hình thoi. d) Gọi I là điểm đối xứng với M qua E. Chứng minh: K đối xứng với I qua A.
Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của AB, BC, AC. a)Chứng minh: Tứ giác ADEF là hình chữ nhật. b)Gọi M là điểm đối xứng của E qua D. Chứng minh: Tứ giác BMAE là hình thôi. c)Cho AB=3cm , BC=5cm. Tính Sabc d)Gọi O là giao điểm của AE và DF. Đường thẳng CO cắt EF tại G. Chứng minh: OG=1:6 CM