Chương 2: TÍCH VÔ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Hương

Cho tam giác ABC đều cạnh a. Tìm tập hợp điểm M thoả: MA^2+MB^2+MC^2= 2a^2

Minh Hiếu
2 tháng 1 lúc 20:52

Gọi I là trọng tâm tam giác:

\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)

Kẻ đường cao AH

\(\Rightarrow AI=\dfrac{2}{3}AH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

\(\Rightarrow AI^2=\dfrac{a^2}{3}=BI^2=CI^2\)

\(MA^2+MB^2+MC^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2\) \(\Leftrightarrow2a^2=3MI^2+2\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right)+IA^2+IB^2+IC^2\)

\(\Leftrightarrow2a^2=3MI^2+3IA^2\)

\(\Leftrightarrow2a^2=3MI^2+\dfrac{3.a^2}{3}\)

\(\Leftrightarrow MI^2=\dfrac{a^2}{3}\)

\(\Leftrightarrow MI=\dfrac{a\sqrt{3}}{3}\)

\(\Rightarrow M\in\) đường tròn tâm I bán kính \(\dfrac{a\sqrt{3}}{3}\)


Các câu hỏi tương tự
Thanh Trần
Xem chi tiết
Min Suga
Xem chi tiết
Khang
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Toản
Xem chi tiết
Quốc Khánh
Xem chi tiết
Min Suga
Xem chi tiết
Min Suga
Xem chi tiết