Vì G là trọng tâm tam giác ABC=> \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{CG}=\overrightarrow{GA}+\overrightarrow{GB}\)
\(\left|\overrightarrow{AB}+\overrightarrow{CG}\right|=\left|\overrightarrow{AG}+\overrightarrow{GB}+\overrightarrow{GA}+\overrightarrow{GB}\right|=2\left|\overrightarrow{GB}\right|=2GB\)
Gọi K là trung điểm AC
\(\Rightarrow GB=\frac{2}{3}BK=\frac{2}{3}\sqrt{AB^2-\frac{1}{4}AC^2}=\frac{2}{3}\sqrt{\frac{3}{4}AB^2}=\frac{2}{3}\sqrt{\frac{3}{4}.4a^2}=\frac{2\sqrt{3}}{3}a\)