cho tam giác ABC,M thuộc cạnh AB sao choMB=2MA.N là điểm thỏa:VECTO NA+NC=VECTO KHÔNG,I LÀ TRUNG ĐIỂM MN.
A)CHỨNG MINH: VECTO BI=-5/6 VECTO AB+1/4 VECTO AC
B)GỌI H LÀ ĐIỂM THỎA: VECTO AH=3/10 VECTO AC.CHỨNG MINH BI QUA H
cho tam giác ABC có M là trung điểm của BC, I là trung điểm của AM tìm 2 số thực m,n thoả mãn vecto AI=m vecto CA + n vecto CB
Cho tam giác ABC đều cạnh a. Gọi I là trung điểm BC.
a) Tính | vecto AB - vecto AC|
b) Tính | vecto BA - vecto BI|
1. Cho tam giác ABC có trọng tâm G M là trung điểm BC I là điểm đối xứng với B qua G . Phân tích vectơ MI theo vectơ AB và vectơ AC
2. Cho▲ABC M là trung điểm của BC sao cho MB=2MC . CMR: vecto AM=1/3 vecto AB +2/3 vecto AC
1. Cho tam giác ABC , M là trung điểm AB , N thuộc cạnh AC sao cho NC=2NA , K là trung điểm MN
a) chứng minh vecto KA=1/4AB+1/6AC
b) gọi D là trung điểm BC chứng minh vecto KD=1/4AB+1/3AC
2. Cho tam giác ABC trung tuyến AM , I là trung điểm AM , K là điểm trên cạnh AC sao cho AK=1/3AC
a) phân tích vecto BI , BK theo vecto a=vecto BA vecto b= vecto BC
b) chứng minh B,I,K thẳng hàng
cho tam giác ABC có G là trọng tâm , I là trung điểm của AB . a) phân tích vecto CI và AG theo vecto BA và BC. b) gọi E,F là 2 điểm thỏa : 4 vecto BE- vecto BC = vecto không, vecto FA = m vecto AC . Tìm m để E,F,I thẳng hàng
cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng