Tam giác ABC cân tại A, gọi M là trung điểm của BC. Biết AM = 8cm, AB = 10cm
a) Tính độ dài BC
b) Chứng minh AM vuông góc BC
c) Từ điểm D nằm giữa A và M. Kẻ DE⊥AB (E∈AB); DF ⊥AC (F∈AC); Chứng minh: DE=DF
d) Qua A kẻ đường thẳng d song song BC. Gọi I, H lần lượt là giao điểm của DE, DF với đường thẳng d. Chứng minh tam giác DIK cân
e) Giả sử góc IDK = 130° tính góc DIK = ? góc DKI = ?
Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của CD và BE, K là giao của AB và DC.
a) Chứng minh rằng:
b) Chứng minh rằng
c) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng đều
d) Chứng minh rằng IA là phân giác của góc DIE
Cho ΔABC vuông cân tại A. Gọi M là trung điểm của B, điểm E nằm giữa M và C. Kẻ BH, CK cùng vuông góc với AE (H và K cùng thuộc đường thẳng AE ). Chứng minh rằng:
a) BH=AK b) ΔMBH=ΔMAK c) ΔMHK là tam giác vuông cân
Cho tam giác ABC vuông tại A có AB=9cm, AC:12cm a, Tính độ dài cạnh BC và so sánh các góc của tam giác ABC b, Tia phân giác của học ABC cách AC tại D. Vẽ DH vuông góc BC(H thuộc BC). Chứng minh AD=HD c, Gọi E là giao điểm của 2 đường thẳng AH và BA. Kéo dài BD cách EC tại I. CM: BI=EC
Cho tam giác ABC và tam giác A phẩy B phẩy C phẩy có các đường cao AD và A phẩy B phẩy biết a = a Phẩy hát 7 Chứng minh tam giác ABC bằng tam giác A phẩy B phẩy C phẩyCho góc nhọn xOy. Gọi I là một điểm thuộc tia phân giác của góc xOy. Kẻ IA vuông góc với Ox (A thuộc Ox) và IB vuông góc với Oy ( B thuộc Oy) a) CM: tam giác OAI = tam giác OBI; IA = IB b) Cho biết: OI= 10cm, AI=6cm. Tính OA c) Gọi K là giao điểm của BI và Ox và M là giao điểm của AI và Oy. So sánh: AK và BM? d) Gọi C là giao điểm của OI và MK. CM: OC vuông góc với MK.
Cho góc nhọn xOy, trên tia Ox đặt doạn AB (A nằm giữa O và B). Trên tia Oy lấy hai điểm C và D sao cho AB = CD. Các đường trung trực của Ac và BD cắt nhau tại M. Hãy xác định quan hệ giữa hai góc OAM và OCM.
Giúp mik vs
Cho tam giác ABC cân tại A. Kẻ đường thẳng vuông góc với AB tại B và kẻ đường thẳng vuông góc với AC tại C, hai đường thẳng này cắt nhau ở D.
⦁ Chứng minh: BD = DC
⦁ Từ B kẻ đường thẳng vuông góc với AC và cắt AC ở E. Chứng minh: BE // CD
⦁ Chứng minh BC là tia phân giác của góc EBD
⦁ Chứng minh AD vuông góc BC
Cho tam giác ABC có ba góc nhọn. (AB<AC). Gọi D là trung điểm của cạnh AC. Trên tia đối của tia DB lấy điểm M sao cho DM=DB
a) Chứng minh: Tam giác ADB=Tam giác CDM
b) Chứng minh AB//CM
c)Chứng minh AM=BC
d) Trên tia MC lấy điểm N sao cho C là trung điểm của MN.Chứng minh AC//BN
e)Gọi I,K lần lượt là trung điểm của AB và CM. Chứng minh: ba điểm K,D,I thẳng hàng
Cho tam giác ABC cân tại A(góc A nhọn). Vẽ AH vuông góc với BC (H thuộc BC). a. Chứng minh tam giác AHB bằng tam giác AHC b. Đường thẳng qua H song song với AB cắt AC tại D. Gọi M là trung điểm của HC. Chứng minh tam giác DHC cân và DM song song với AH.
giúp em câu b