Hình bạn tự vẽ nhé.
Ta có: B' là điểm đối xứng của B qua O( tâm đường tròn ngoại tiếp tam giác ABC) \(\Rightarrow BB'\) là đường kính của đường tròn ngoại tiếp tam giác ABC \(\Rightarrow\Lambda BAB'\) và \(\Lambda BCB'\) là góc chắn nửa đường tròn ( đường tròn ngoại tiếp tam giác ABC) \(\Rightarrow\left\{{}\begin{matrix}AB'\perp AB\\B'C\perp BC\end{matrix}\right.\) Mà \(\left\{{}\begin{matrix}HC\perp AB\\AH\perp BC\end{matrix}\right.\) ( do H là trực tâm của tam giác ABC) \(\Rightarrow\left\{{}\begin{matrix}AB'//HC\\AH//B'C\end{matrix}\right.\) \(\Rightarrow\) AB'CH là hình bình hành \(\Rightarrow\left\{{}\begin{matrix}AH//B'C\\AH=B'C\end{matrix}\right.\) \(\Rightarrowđpcm\)