cho tam giác ABC nhọn (AB<AC) nội tiếp (O) các đường cao AD,BE CF cắt nhau tại H
a) chứng minh CDHE nội tiếp
b) EF và BC cắt nhau tại M , chứng minh MB.MC=ME.MF
c) đường thẳng qua B và song song AC cắt AM,AH tại I,K. Chứng minh HB là phân giác của IHK
Cho tam giác ABC nhọn nội tiếp đường tròn ( O ), Đường cao AD, BE,CF cắt nhau tại H .AH ,BH, CH kéo dài cắt đường tròn tâm O lần lượt tại Q,P,R. M là trung điểm của BC, I là trung điểm của AH , EF cắt AH tại K . Chứng minh :
a, Chứng minhTứ giác BFHD , CEHD , BFEC nội tiếp
b, Kẻ đường kinh AN , G là trọng tâm . Chứng minh H,G,O thẳng hàng
c, Chứng minh P,Q,R đối xứng với H qua AC,BC,AB
d, Chứng minh OA vuông góc với EF và tam giác ARQ cân
e, EF cắt đường tròn tại E1 và F1. Chứng minh AE1 , AF1 là tiếp tuyến của đường tròn ngoại tiếp tam giác CEE1 và tam giác BFF1
f, Chứng minh K là trực tâm của tam giác IBC
h,Chứng minh ME và MF là tiếp tuyến của đường tròn ngoại tiếp tam giác AEF
Cho tam giác ABC có 3 góc nhọn. Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai là D, cắt AC, AB thứ tự tại E và F.
a Chứng minh D thuộc BC và 3 đường thẳng AD, BE, CF thẳng hàng
b]Chứng minh I là tâm đường tròn nội tiếp tam giác DEF
Cho tam giác ABC nhọn ( AB AC ) nội tiếp đường tròn (O) , các đường cao AD,BE
và CF cắt nhau tại H .
a. Chứng minh tứ giác BDEA nội tiếp và FC là tia phân giác của EFD .
b) Kéo dài AD cắt (O) tại P (P A).
Chứng minh D là trung điểm của HP và BFEDHE.
c) Gọi giao điểm của PE và đường tròn (O) là M.
Chứng minh BM đi qua trung điểm của EF.
(GIÚP EM VỚI. NGÀY MAI EM THI CẤP 3 RỒI :<)
Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Ba đường cao AD, BE, CF cắt nhau tại H. Các tiếp tuyến tại B và C cắt nhau tại S. Nối EF cắt SB tại I cắt OA tại K. Gọi M là trung điểm BC.
a. Chứng minh rằng: SBOC nội tiếp.
b. Chứng minh rằng: IB = IF.
c. Chứng minh rằng: EF. CD = KF. BC
Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB < AC, các đường cao BE, CF của tam giác ABC cắt nhau tại H, đường thẳng EF cắt đường thẳng BC tại K.
1. Chứng minh tứ giác BCEF nội tiếp.
2. Chứng minh hai tam giác KBF và KEC đồng dạng, từ đó suy ra KB.KC = KF.KE.
3. Đường thẳng AK cắt lại đường tròn (O) tại G khác 4, chứng minh các điểm A, G, F, E. H củng thuộc một đường tròn.
4. Gọi I là trung điểm cạnh BC, chứng minh HI vuông góc với AK.
Cho tam giác ABC (AB<AC) nội tiếp đường tròn O ,2 đường cao BE và CF cắt nhau tại H
a) chứng minh : các tứ giác BCEF , tứ giác AEHF nội tiếp
b) tia BE,CF cắt đường tròn theo thứ tự tại MN . chứng minh MN song song EF
c) Gọi K là giao điểm OA và MN . chứng minh tứ giác HEKF là hình bình hành
Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh tứ giác BCEF nội tiếp
b) Gọi I là trung điểm của cạnh BC, K là điểm đối xứng của H qua I. Chứng minh ba điểm A,O,K thẳng hàng
Ai giải giúp mình câu b được không. Mình xin cảm ơn rất nhiều
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O), các đường cao AD, BE và CF cắt nhau tại H.
a) Chứng minh tứ giác BDHF và BCEF nội tiếp.
b) Chứng minh FC là tia phân giác của \(\widehat{EFD}\).
c) Hai đường thẳng EF và BC cắt nhau tại M. Đường thẳng qua B và song song với AC cắt AM tại I và cắt AH tại K. Chứng minh tam giác HIK là tam giác cân.