Ta có: \(AD=AB\left(gt\right)\Rightarrow\Delta ABD\) cân tại A
\(\Rightarrow\widehat{ABD}=\widehat{ADB}=\dfrac{180^0-\widehat{BAD}}{2}\)
Mà \(\widehat{BAD}=\widehat{ABC}+\widehat{ACB}\) ( tính chất góc ngoài của tam giác)
\(\Rightarrow\widehat{ABD}=\dfrac{180^0-\left(\widehat{ABC}+\widehat{ACB}\right)}{2}\)
Ta có: \(\widehat{CBD}=\widehat{ABD}+\widehat{ABC}=\dfrac{180^0-\left(\widehat{ABC}+\widehat{ACB}\right)}{2}+\widehat{ABC}=\dfrac{180^0-\widehat{ABC}-\widehat{ACB}+2\widehat{ABC}}{2}=\dfrac{180^0+\left(\widehat{ABC}-\widehat{ACB}\right)}{2}=90^0+\dfrac{\alpha}{2}\)