Áp dụng định lí tổng 3 góc trong môt tam giác vào tam giác ABC , ta có :
\(\widehat{B}+\widehat{C}+\widehat{A}=180^0\)
\(\widehat{B}+\widehat{C}=120^0\)
\(\widehat{IAC}+\widehat{ICA}=60\)
\(\Rightarrow\widehat{AIC}=120^0\)
B )Vẽ IT, T thuộc AC sao cho AT = AQ, chứng minh được hai tam gíac AQI và ATI bằng nhau (cgc) suy ra các góc QIA, AIT bằng nhau hơn nữa bằng 60 độ, mà góc AIC bằng 120 độ. Từ đó thấy góc bằng góc ICP bằng 60 độ. Dẫn đến hai tam giác ITC, IQC bằng nhau. Suy ra IQ = IT = IP.
Cách dùng lớp 9: Chứng minh tứ giác BQIP nội tiếp (dễ thấy)
Suy ra hai góc IBP, IQP đều bằng 30 độ, tương tự cho hai góc IPQ, IBQ bằng 30 độ. Nên tam giác IPQ cân tai I.