Cho tam giác ABC cân tại A có M, N lần lượt là trung điểm của AB, BC. Qua N kẻ đường thẳng song song với AB và cắt AC tại K. a) Chứng minh NK = 1/2 AB b) Chứng minh tam giác MNK cân tại N
Bài 3:Cho tam giác ABC cân tại A. Có BD và CE là hai đường trung điểm; D thuộc AC, E thuộc AB. Chứng minh rằng
a)Tam giác ADE cân tại A
b)Tam giác ABD = Tam giác ACE
c)BCDE là hình thang cân
Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh MN là đường trung bình của tam giác ABC.
b) Chứng minh tứ giác MNCB là hình thang cân.
c) Cho BC = 6cm. Tính MN.
Cho tam giác ABC cân tại A . Gọi M,N lần lượt là trung điểm của AB,AC.
Chứng minh: tứ giác MNCB là hình thang cân
Cho tam giác vuông cân tại a có AN là đường trung tuyến, gọi N là trung điểm của AC a, chứng minh MN //AC B, tam giác AMC LÀ tam giác j?? c, chứng minh 2AM =BC
Cho tam giác AbC có góc A=90 độ. M là trung điểm của BC. Vẽ MN vuông góc với AB tại N. Chứng minh: N là trung điểm của AB
Cho tam giác ABC cân tại A, trung tuyến AD. Kẻ DH vuông góc với AC tại
H.Gọi M,I lần lượt là trung điểm của HC,HD.
1.Chứng minh: MI // BC, DM // AH
2.Chứng minh: MI vuông góc với AD.
3.Chứng minh: AI vuông góc với BC.
Bài 1: Cho tam giác ABC vuông cân tại C. Trên AC, CB lấy lần lượt điểm D,E sao cho CD=CE. Từ D,C hạ vuông góc với AE. Các đường vuông góc này cắt AB thứ tự là K,L. C/m: KL=KB.
Bài 2: Cho tứ giác ABCD,M và N lần lượt là trung điểm của AB và CD, biết: AD cắt MN tại E, BC cắt MN tại F. Với điều kiện nào của tứ giác thì ABCD có: góc AEM=FEM
Bài 3: Cho tam giác ABC có 3 góc nhọn, các đường cao CH, BK. Gọi D Và E lần lượt là hình chiếu của B và C trên đường thẳng HK. C/m: DK=EH.
Cho tam giác ABC cân tại A. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = CN. Gọi I là trung điểm của MN. Đường thẳng qua I song song với BC cắt AB, AC lần lượt tai D, E. Chứng minh rằng DE là đường trung bình của tam giác ABC.