Cho tam giác ABC vuông tại A có AB=AC . Lấy điểm D thộc cạnh AB, điểm E thuộc cạnh AC sao cho AB=AE. đường thẳng đi qua D và vuông góc với BE cắt đường thẳng CA ở K . CMR: AK=AC
Cho ΔABC có ∠A=90*;điểm Dthuộc cạnh AB. Kẻ đường thẳng đi qua B vuông góc với CD và cắt đường thẳng CA ở K
CMR: AK=AD
cho tam giác ABC có góc A = 90 độ , AB=AC qua A kẻ đường thẳng d sao cho điểm B và điểm C nằm cùng phía với điểm d. kẻ BD và CE vuông góc với đường thẳng d. chứng minh rằng BD=AE , AD=CF
cho một tam giác ABC có AB=AC; O là trung điểm của BC.
a)chứng minh rằng: tam giác ABO bằng tam giác ACO
b)Qua điểm A vẽ đường thẳng song song với BC và qua điểm B vẽ đường thẳng vuông góc với BC, hai đường thẳng này cắt nhau tại K. Chứng minh rằng : AK=OC
GIÚP MÍNH CÂU b) NHA
Cho tam giác ABC có AB<AC góc A= 60độ, AH là tia phân giác của góc BAC
a, tính số đo góc BAH
b, lấy điểm K thuộc cạnh AC sao cho AK= AB. CM: tam giác AHB= tam giác AHK
c,CM: AH vuông góc với BK
d, Qua H vẽ đường thẳng vuông góc với AH cắt AC tại N và tia AB tại Q
CM rằng: AH là đường trung trực của QN
Cho tam giác ABC có góc A bé hơn 90 độ trên đường thẳng đi qua đỉnh A và vuông góc với AB lấy D sao cho AB=AD (C và D nằm khác phía đối với AB) trên đường thẳng đi qua A và vuông góc với AC lấy E sao cho AE=AC(B và E nằm khác phía đối với AC)
a) C/m BE=CD
b) C/m AB không vuông góc DE
Cho tam giác ABC có góc A < 90 . Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB , AE vuông góc và bằng AC . Gọi H là chân đường vuông góc kẻ từ A đến BC . Chứng minh rằng : Tia HA đi qua trung điểm của đoạn thẳng DE .
Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh
a/ ΔABM=ΔECM
b/ AB//CE
Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC
a/ Chứng minh : ΔAKB=ΔAKC
b/ Chứng minh: AK vuông góc với BC
c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA
a/ Chứng minh ΔABM=ΔDCM
b/ Chứng minh AB//DC
c/ Chứng minh AM vuông góc với BC
d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o
Bài 4: Cho ΔABC vuông tại A có góc B=30o
a/ Tính góc C
b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D
c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD
d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD
e/ Tính góc AKC.
Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd
a/ Chứng minh AD=BC
b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD
c/ Chứng minh OE là phân giác của góc xOy
Cho tam giác ABC vuông tại A, biết góc ACB = 40 độ
a) Tính góc ABC
b) Phân giác của góc B cắt AC tại D. Lấy E thuộc BC sao cho BE = BA.
Chứng minh: Tam giác BDA = tam giác BDE
c) Qua B kẻ đường thẳng xy vuông góc với AB. Từ A kẻ đường song song với BD, cắt xy tại K
Chứng minh: AK = BD
d) Qua C kẻ đường vuông góc với BD tại H và cắt tia BA tại F.
Chứng minh: Ba điểm E; D; F thẳng hàng
( Các bạn biết giải câu d xin ghi cách giải giùm tớ. Cảm ơn)