a) Xét 2 tam giác vuông BAH và DAH, ta có:
BH = BD
HA chung
=> tam giác ABH = tam giác ADH
=> AB = AH
=> Tam giác ABD cân
=> đpcm
a) Xét 2 tam giác vuông BAH và DAH, ta có:
BH = BD
HA chung
=> tam giác ABH = tam giác ADH
=> AB = AH
=> Tam giác ABD cân
=> đpcm
cho tam giác abc cân tại a kẻ ah vuông góc với bc a) chứng minh AH là phân giác của góc BAC b)gọi i, k là hình chiếu của H lên AB, AC. Chứng minh AI=AK c) gọi M là trung điểm của IK chứng minh 3 điểm A, M, H thẳng hàng
cho tam giác abc cân tại a kẻ ah vuông góc với bc a) chứng minh AH là phân giác của góc BAC b)gọi i, k là hình chiếu của H lên AB, AC. Chứng minh AI=AK c) gọi M là trung điểm của IK chứng minh 3 điểm A, M, H thẳng hàng
Cho tam giác ABC cân tại A(góc A <90 độ).Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K.
a) Chứng minh rằng: AH=AK.
b) Gọi I là giao điểm của BH và CK.Chứng mnh rằng AI là tia phân giác của góc A.
c) Cho biết AB =10cm, AK=6cm.Tính CK,BC
Cho tam giác ABC vuông tại A . kẻ AH vuông góc vs BC . Kẻ HP vuoog góc vs AB và kéo dài để có PE = PH . Kẻ HQ vuoog góc vs AC và kéo dài để có QF = QH
1) Cm : tam giác APE = tam giác APH , tam giác AQH = tam giác AQF
2) Cm : A là trung điểm của EF .
3) Cm : BE//CF
4) Cho AH = 3cm , AC = 5 cm . tính HC , EF
cho tam giác abc vuông tại a.Đường phân giác bd(d thuộc ac).từ d kẻ dh vuông góc với bc tại h.Đường thẳng dh cắt đường thẳng ab tại k a)chứng minh ad=hd b)so sánh độ dài ad và dc c)chứng minh bd vuông góc với kc
Cho tam giác ABC cân tại A. Gọi H là chân đường vuông góc kẻ từ A đến BC, điểm D thuộc cạnh BC (D khác H). Chứng minh AH < AD < AB?
Cho tam giác ABC cân tại A. Gọi H là chân đường vuông góc kẻ từ A đến BC, điểm D thuộc cạnh BC (D khác H). Chứng minh AH < AD < AB?
cho góc ngọn xoy. Điểm H nằm trên tia phân giác của góc xoy. Từ H kẻ AH⊥Ox và HB⊥Oy
a, chứng minh tam giác HAB cân
b,gọi Dlà đường xiên của điểm A trên oy ,C là giao điểm của AD và OH .Chứng minh BC ⊥Ox
c,khi góc xoy bằng 60 độ .OA bằng 2OD