Bài 3: Tính chất đường phân giác của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Diệu Anh

Cho tam giác ABC có góc A = 90o , AB=20cm , AC=21cm

a) Tính BC

b) Kẻ phân giác AD (D thuộc BC) . Tính BD, CD ?

c) Qua D kẻ đường thẳng song song với AC cắt AB ở E. Qua D kẻ đường thẳng song song với AB cắt C ở F .

Tứ giác AEDF là hình gì ? Tính diện tích tứ giác AEDF ?

Nguyễn Lê Phước Thịnh
6 tháng 3 2020 lúc 18:37

a) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được

\(BC^2=AB^2+AC^2\)

hay \(BC^2=20^2+21^2=841\)

\(BC=\sqrt{841}=29cm\)

b) Ta có: AD là đường phân giác ứng với cạnh BC của ΔABC(gt)

\(\frac{BD}{CD}=\frac{AB}{AC}\)(t/c đường phân giác của tam giác)

hay \(\frac{BD}{CD}=\frac{20}{21}\)

\(\frac{BD}{20}=\frac{CD}{21}\)

Ta có: BD+CD=BC(do B,C,D thẳng hàng)

hay BD+CD=29cm

Ta có: \(\frac{BD}{20}=\frac{CD}{21}\) và BD+CD=29cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được

\(\frac{BD}{20}=\frac{CD}{21}=\frac{BD+CD}{20+21}=\frac{29}{41}\)

Do đó:

\(\frac{BD}{20}=\frac{29}{41}\)\(\frac{CD}{21}=\frac{29}{41}\)

\(BD=\frac{29\cdot20}{41}\)\(CD=\frac{29\cdot21}{41}\)

\(BD=\frac{580}{41}\)\(CD=\frac{609}{41}\)

Vậy: \(BD=\frac{580}{41}\)cm, \(CD=\frac{609}{41}\)

c) Xét tứ giác AEDF có

FD//AE(FD//AB,E∈AB)

DE//AF(DE//AC,F∈AC)

nên AEDF là hình bình hành(dấu hiệu nhận biết hình bình hành)

Hình bình hành AEDF có \(\widehat{FAE}=90^0\)(\(\widehat{BAC}=90^0\), F∈AC, E∈AB)

nên AEDF là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

Hình chữ nhật AEDF có đường chéo AD là tia phân giác của \(\widehat{FAE}\)(do AD là tia phân giác của \(\widehat{BAC}\), F∈AC, E∈AB)

nên AEDF là hình vuông(dấu hiệu nhận biết hình vuông)

\(S_{AEDF}=DE^2\)(a)

Xét ΔABC có DE//AC(gt)

nên ΔDEB∼ΔBAC(hệ quả định lí talet)

\(\frac{DE}{AC}=\frac{BD}{BC}=\frac{BE}{BA}\)

hay \(\frac{DE}{21}=\frac{\frac{580}{41}}{29}=\frac{20}{41}\)

\(DE=\frac{20\cdot21}{41}=\frac{420}{41}\)(b)

Từ (a) và (b) suy ra \(S_{ABCD}=\left(\frac{420}{41}\right)^2=\frac{176400}{1681}cm^2\)

Vậy: ...

Khách vãng lai đã xóa