Ta có hình vẽ:
Vì AI là phân giác của BAH nên \(BAI=HAI=\frac{BAH}{2}\)
CI là phân giác của BCA nên \(BCI=ACI=\frac{BCA}{2}\)
Δ ABC vuông tại A có: ABC + BCA = 90o
=> BCA = 90o - ABC
=> \(\frac{BCA}{2}=45^o-\frac{ABC}{2}=ACI\)
Δ ABH vuông tại H có: ABH + BAH = 90o
=> BAH = 90o - ABH
=> \(\frac{BAH}{2}=45^o-\frac{ABH}{2}=BAI\)
Lại có: IAC = BAC - BAI
=> IAC = 90o - (45o - \(\frac{ABH}{2}\))
=> IAC = 45o + \(\frac{ABH}{2}\)
Xét Δ AIC có: AIC + IAC + ICA = 180o (tổng 3 góc của Δ)
=> AIC + 45o + \(\frac{ABH}{2}\) + 45o - \(\frac{ABC}{2}\) = 180o
=> AIC + 90o = 180o
=> AIC = 180o - 90o = 90o (đpcm)