a: Xét ΔABC có
\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-60^0=120^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=60^0\)
\(\Leftrightarrow\widehat{BIC}=120^0\)
a: Xét ΔABC có
\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-60^0=120^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=60^0\)
\(\Leftrightarrow\widehat{BIC}=120^0\)
Cho tam giác ABC vuông tại A (AB < AC). Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên đoạn AC lấy điểm H sao cho AH = AB.
a) Chứng minh góc ADH = góc ADB
b) Tia HD cắt AB tại E. Chứng minh : tam giác AHE = tam giác ABC và AD ^ EC
c) Gọi G là trung điểm của ED. Tia AD cắt CG tại X. Chứng minh 3.DX < 2.DC
Cho tam giác ABC có góc A là góc tù. Các đường trung trực AB; AC cắt nhau tại O và lần lượt cắt BC tại M, N. Chứng minh rằng AO là tia phân giác của góc MAN ?
cho tam giác abc cân tại A 2 trung tuyến BM,CN cắt nhau tại I 2 tia phân giác của góc B và C cắt tại O 2 trung trực của 2 cạnh AB,AC cắt nhau tại k a) chứng minh BM=CN b) chứng minh OB=OC c) chứng minh A,O,I,K thẳng hàng
cho tam giác ABC có các cạnh a,b,c.Gọi M là trung điểm cạnh BC,Qua M kẻ đường vuông góc với phân giác trong của góc A,đường vuông góc này cắt các đường thẳng AB và AC tại D và E.
a,Chứng minh rằng BD = CE
b, Tính Ad Và Bd theo các cạnh a,b,c
cho tam giác ABC vuông tại A; BD là phân giác của góc B (D thuộc AC). trên tia BC lấy điểm E sao cho BA = BE. a) chứng minh rằng: tam giác ABD = tam giác EBD và DE vuông góc với BE. b) chứng minh: BD là đường trung trực của đoạn tthẳng AE. c) Kẻ AH vuông góc với BC tại H. CHỨNG minh rằng: AD < DH
Cho tam giác ABC cân tại A có trung tuyên BE và CF cắt nhau tại G chứng minh: a,tam giác ABE=tam giác ACF b,chứng minh EF song song BC c,AG vuông góc BC
Cho tam giác ABC cân tại A , có góc A nhỏ hơn 90 độ ,M là trung điểm của đoạn BC
a, Chứng minh M là đường trung trực của đoạn BC
b, Đường trung trực d của AC cắt CB tại D . Chứng minh góc DAC = góc ABC
c, Trên tia đối của AD lấy E sao cho AE=BD . Chứng minh đường trung trực DE đi qua C.
cho tam giác ABC cân tại A,A>90 độ. Các đường trung trực của AB và của AC cắt nhau tại O và cắt BC tại D và E. Chứng minh rằng:
a)OA là đường trung trực của BC;
b)BD=CE;
c) Tam giác ODE là tam giác cân
cho tam giác ABC vuông tại A có đường trung tuyến BN . trên tia đối của tia B lấy D sao choND = NB chứng minh a, AB=CD và AB vuông góc với CD b, AD=BC và AD songsong với BC c, góc ABN=góc CBN