Ôn tập chương I : Tứ giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
le cong son
Cho tam giác ABC có đường trung tuyến BC và CE cắt nhau tại G . Gọi H là trung điểm của GB ,K là trung điểm của GC. a, chứng minh tứ giác DEHK là hình bình hành. b. Tâm giác ABC có điều kiện gì thì tứ giác là hình chữ nhật. c . Nếu BD vuông CE thì tứ giác DEHK là hình gì
Nguyễn Lê Phước Thịnh
19 tháng 2 2021 lúc 21:24

Sửa đề: Đường trung tuyến BD

a) Ta có: BD và CE lần lượt là các đường trung tuyến ứng với các cạnh AC,AB trong ΔABC(gt)

nên E là trung điểm của AB và D là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB(cmt)

D là trung điểm của AC(cmt)

Do đó: ED là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔGBC có 

H là trung điểm của GB(gt)

K là trung điểm của GC(gt)

Do đó: HK là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: HK//BC và \(HK=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ED//HK và ED=HKXét tứ giác EDKH có 

ED//HK(cmt)

ED=HK(cmt)

Do đó: EDKH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Đỗ Thạch Ngọc Anh
22 tháng 2 2021 lúc 11:11

Sửa đề: Đường trung tuyến BD

a) Ta có: BD và CE lần lượt là các đường trung tuyến ứng với các cạnh AC,AB trong ΔABC(gt)

nên E là trung điểm của AB và D là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB(cmt)

D là trung điểm của AC(cmt)

Do đó: ED là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: ED//BC và HK=BC2HK=BC2(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ED//HK và ED=HKXét tứ giác EDKH có 

ED//HK(cmt)

ED=HK(cmt)

Do đó: EDKH là hình bình hành(Dấu hiệu nhận biết hình bình hành)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Cherry
Xem chi tiết
Thúy Lê thanh
Xem chi tiết
Phương Mai
Xem chi tiết
Hoàng Đeng siu dễ thương
Xem chi tiết
Viễn Đang Lo Âu
Xem chi tiết
Phú Nguyễn
Xem chi tiết
Trang Phạm
Xem chi tiết
Phú Nguyễn
Xem chi tiết