Cho tg ABC, D, E thuộc tia đối BA, CA sao cho BD = CE = BC. Gọi giao điểm BE, CD. Qua O kẻ song song với phân giác góc A cắt AC tại K. Cminh : AB = CK
Cho tam giác ABC (AB < AC). Trên cạnh CA lấy điểm I sao cho CI = AB. Trên tia đối của tia
AB lấy điểm D sao cho AD = AI. Trên tia đối của tia BA lấy điểm E sao cho BE = BC. Gọi K là giao
điểm của DI và EC, gọi N là giao điểm của BK và AC. Qua C kẻ đường thẳng song song với AB, cắt DK
ở H. Chứng minh rằng
a) ABHC là hình bình hành
. b) tam giác BCN là tam giác cân.
cho tam giác ABC vuông cân tại A. Trên đoạn thằng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường thẳng vuông góc với Ab cắt BI tại K
a. cmr tứ giác EKFC là hình bình hành
b. qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. cmr: AI=BM
c. cmr C đối xứng với D qua MF
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH, gọi M là trung điểm AC.Trên tia đối của tia MH lấy D sao cho MD=MH a) Chứng minh ADHC là hình chữ nhật b) Gọi E là điểm đối xứng C qua H. Chứng minh ADHE là hình bình hành c) Vẽ EK vuông góc AB tại K. Gọi I là trung điểm AK. Chứng minh KE // IH
Cho tam giác ABC nhọn(AB>BC).Gọi M,N,P lần lượt là trung điểm AB,AC,BC.Trên tia đối tia NM lấy D sao cho ND=NM.Chứng minh a) Tứ giác BMNP là hình bình hành b)BN//DP c)PN đi qua trung điểm AD d)Gọi MC cắt PD ở E. Chứng minh DE=2PE
Cho ∆ABC nhọn, AB < AC. Hai đường trung tuyến AD và BE cắt nhau tại G. Trên tia đối của tia DE lấy điểm M sao cho DM = DE.
a/ Chứng minh AEMB là hình bình hành.
b/ Gọi O là giao điểm của AM và BE. Chứng minh DO // AE.
c/ Gọi N là giao điểm của DO và AB. Chứng minh N, G, C thẳng hàng.
Cho tam giác ABC vuông tại A . Trên tia đối của tia CD lấy điểm F ; trên tia đối của tia AB lấy điểm E sao cho BE=CF . Vẽ hình bình hành BEFD.
a, Chứng minh Dc vuông góc với BC
b, Gọi I là giao EF và BC . Chứng minh AI= 1/2 DB. c, Qua I kẻ đường thẳng vuông góc với AF cắt BD tại M . Chứng minh MICF là hình thang cân . Tìm vị trí của E trên AB để A,I,D.
Cho tam giác ABC cân ở A . Lấy D thuộc tia đối của tia CA, E thuộc AB với BE=CD. DE cắt BC ở M. Chứng minh rằng: M là trung điểm DE
Bài 1 : Cho hình bình hành ABCD ( AB > BC ) . Tia phân giác của góc D cắt AB ở E , tia phân giác của góc B cắt CD ở F . a ) Chứng minh DE // BF b ) Tứ giác DEBF là hình gì Bài 2 : Cho hình bình hành ABCD . gọi K , I lần lượt là trung điểm của các cạnh AB , CD . Gọi M , N lần lượt là giao điểm của AI , CK với đường chéo BD . Chứng minh AC , BD , IK đồng quy tại một điểm