Bài 2: Cho tam giác ABC có 3 đường phân giác trong AD, BE, CF cắt nhau tại I. Kẻ đường thẳng qua A song song với BC cắt DF và DE theo thứ tự tại M và N.
a) Chứng minh AM/BD = AC/BC
b) Chứng minh AM = AN
Cho tam giác ABC, AD là đường trung tuyến. Gọi M là điểm tùy ý thuộc khoảng BD. Lấy E thuộc AB và F thuộc AC sao cho ME//AC; MF//AB . Gọi H là giao điểm MF và AD. Đường thẳng qua B song song với EH cắt MF tại K. Đường thẳng AK cắt BC tại I. Tính tỉ số IB/ID
Cho tam giác ABC (AB<AC), đường phân giác AD của góc BAC (với D thuộc BC). Từ trung điểm M của BC, kê một đường thẳng song song với AD,cắt AC tại F và cắt tia đối của tia AB tại E. Chứng minh BE = CF, AE = AF
Cho tam giác ABC có AC=10cm, BC=9cm. Lấy D thuộc BC sao cho BD=3cm. Lấy G,H thuộc AC sao cho AG=CH=4cm. BG cắt AD tại E. Tính AE/AD
1.Cho hình bình hành ABCD , điểm G chia trong cạnh DC theo tỉ số 1:2 điểm K chia trong cạnh BC theo tỉ số 3:2.Tính độ dài 3 đoạn thẳng do AG, AK định trên BD , biết rằng BD=16cm
2.Đường thẳng đi qua trung điểm các cạnh đối AB,CD của tứ giác ABCD cắt các đường thẳng AD và BC theo thứ tự I và K . Cmr :
IA:ID=KB:KC
3. Cho tam giác ABC vuông cân tại A , đường trung tuyến BM .Trên cạnh BC lấy điểm D sao cko BD=BE=EC , Biết AD=10 , AE=15. Tính độ dài BC
Bài 4:Cho tam giác ABC có AB = 6cm, AC = 8cm , BC = 10cm. Lấy điểm D trên AB sao cho AD = 2cm. Qua D vẽ đường thẳng song song với BC cắt AC tại E. 1) Tính AE. 2) Qua E vẽ đường thẳng song song với AB và cắt BC tại F. Tính BF, DE. 3) Tính và so sánh các tỉ số : AD/AB , AE/AC , DE/BC
Cho tam giác ABC có AD là đường trung tuyến. Lấy điểm O nằm giữa A và D. Qua O vẽ đường thẳng d cắt các tia AB, AC tại E và F. Hãy xác định vị trí của điểm O để BE / AE + CF / AF = 1.